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Finally, we would like to extend our sincere gratitude to the Research Coun-
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Sciences, the Ordered Data, Reliability and Dependency Center of Excellence,
the Islamic World Science Citation Center, the Iranian Statistical Society, the
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dents and staff of the Department of Statistics at the University of Birjand for
their kind cooperation.

Majid Chahkandi (Chairman)
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The aim of the seminar is to provide a forum for presentation and discussion
of scientific works covering theories and methods in the field of reliability and
its application in a wide range of areas:

• Accelerated life testing

• Bayesian methods in reliability

• Case studies in reliability analysis

• Computational algorithms in reliability

• Data mining in reliability

• Degradation models

• Lifetime data analysis

• Lifetime distributions theory

• Maintenance modeling and analysis

• Networks reliability

• Optimization methods in reliability

• Reliability of coherent systems

• Safety and risk assessment

• Software reliability

• Stochastic aging

• Stochastic dependence in reliability

• Stochastic orderings in reliability

• Stochastic processes in reliability

• Stress-strength modeling

• Survival analysis
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The 7th Seminar on Reliability Theory and its Applications

Several Bounds for Lifetime of Mixed Harris Family

Abbasi, S.1, and Alamatsaz, M.H.2

1 Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad
University, Isfahan, Iran

2 Department of Statistics, University of Isfahan, Isfahan, Iran

Abstract: As a lifetime distribution, Harris family distributions are applied as
the lifetime of a series system with random number of components. In this
paper, properties of various ageing classes of mixtures of Harris family distri-
bution, where its tilt parameter is taken as a random variable, are studied. We
obtain an upper bound for maximum error in evaluating the reliability func-
tion. Two bounds are also presented for survival function and expectation of
mixed Harris family. We also provide some interesting bounds for its resid-
ual survival function. Our results generalize several previous findings in this
connection. Some illustrative examples are provided.

Keywords: Ageing, Harris family distribution, Marshall-olkin distribution,
Reliability function.

1 Introduction

Distributions such as exponential, Weibull, gamma, etc, have a limited range
of behavior and can not model all situations found in analyze of lifetime or
survival data. This motivated [17] and [8] to develop two new families of
distributions. In their approaches, they considered a baseline distribution and
extended it to a new and more flexible distribution. The resulting classes are

1Abbasi, S.: s.abbasi.29@gmail.com
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called Marshall-Olkin and Harris family of distributions, respectively. Both
classes of such distributions are, in particular, useful in reliability theory. To
cover a wide range of data such as those with high degrees of skewness and
kurtosis, they added a parameter to the model called the tilt parameter.
Recently, another method of constructing Harris family was introduced by
[11]. They revealed that Harris family is a proportional failure rate model
which is obtained from a modified Marshall-Olkin family.
Due to various reasons, in many practical situations the, tilt parameter may not
be constant and the occurrence of heterogeneity is sometimes unpredictable
and cannot be explained. For instance, survival analysis is mainly concerned
with investigating the hazard of death at any time when an individual patient
is involved in a clinical trial or other medical study. Due to the difference be-
tween individuals in their susceptibility to causes of death or disease, response
to treatment, and influence of various risk factors, the observed covariate, such
as demographic, physiological, or lifestyle characteristics, are taken into ac-
count. Nevertheless, heterogeneity unexplained by observed covariate usually
plays an important role because it sometimes leads to a misleading conclusion
(cf. [16]). Therefore, it is important to inspect the unobserved random factors’
influence on the random variable (rv). Considering this fact, we need to study
the mixture of a family of distributions. Mixture distributions are often used
in mixture models, which are used to express probabilities of sub-populations
within a larger population. A mixture model can accommodate the histori-
cally observed data in that sense and offers a flexible solution for different
distributional forms. Recently, [6], [4] and [5] were concerned with stochastic
comparison of certain distributions with their mixtures. More recently, [1] [2]
were concerned with stochastic comparison of two Harris family distributions
having the same and different tilt parameters, respectively.
In this paper, we take the tilt parameter in a Harris family distribution as a rv
and construct a mixed Harris family distribution. Mixtures are of interest, e.g.,
in survival analysis, reliability theory and actuarial sciences.
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In a Harris family distribution, there is no theoretical basis for choosing the
baseline distribution and the distribution of its tilt parameter, when tilt param-
eter is a rv. Therefore, it is important to see how a Harris family rv responds
to the change of its baseline distribution and tilt parameter. The knowledge
of ageing properties of baseline distributions helps to better understand the
mechanism of a mixed model. [14] have studied the structure and properties
of the proportional odds model. They have shown positive ageing properties
are transformed from one rv to another. Recently [11] discussed several re-
sults in connection with behavior of the failure rate function for the Harris
family and studied certain related stochastic orderings [7]. presented a pro-
portional hazard version of Marshall-Olkin family of distributions and investi-
gated likelihood ratio ordering in this model. [18] discussed closure properties
of mixture of the family of distributions under different stochastic orderings.
[19] studied some ageing properties of Marshall-Olkin family of distributions.
[2] compared Harris family distribution with its mixture with respect to sev-
eral stochastic orderings. Now, in this paper, we obtain an upper bound for
the maximum error in evaluating the reliability function for this model when
the baseline distribution function (df) is mistakenly assumed to have a con-
stant hazard rate. In many practical problems, using a sample data set, we are
able to obtain some life information such as the mean and variance of a life
distribution. But the exact value of the reliability function can not be easily
obtained. However, it is still helpful to derive some bounds for a reliability
function based on the known information. These bounds can tell us the scope
of the reliability of products and provide a basis for further improvements. In
addition, we obtain two bounds for survival functions conditioned on the tilt
random parameter, which are useful in distinguishing the failure probability of
a component after a time t when the tilt parameter is unobservable. We also
obtain a bound for the mean of a mixed Harris family in terms of the mean of
the baseline distribution. Further, upper and lower bounds are presented for
the residual survival function of a mixture of Harris family. Our results en-
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fold all related findings on Marshall-Olkin family. In Section 2, we shall state
methods of generating Marshall-Olkin and Harris family distributions. In Sec-
tion 3, we obtain several interesting bounds for a mixed Harris family which
are useful in reliability. Some illustrative examples are provided.

2 Harris family of distributions

Marshall-Olkin and Harris family distributions are basically generated by the
same methods. They proceed as follows: Let X1,X2, ... be a sequence of inde-
pendently identically distributed (iid) random variables (rv’s) with common df
F and survival function (sf) F̄ = 1−F . Let X = min{X1,X2, ...,XN}, where N

is a positive integer valued rv independent of Yi’s with probability generating
function (pgf)

PN(t) = E(tN) =
∞

∑
n=0

tnP(N = n), t ∈ [0,1].

It is noted that X can be viewed as the lifetime of a series system with iid
component lifetimes X1,X2, ...,XN and a random number N of components.
Clearly, the sf H̄ of X has the representation

H̄(x) =
∞

∑
n=0

[F̄(x)]nP(N = n), (1)

so that

H̄(x) = PN(F̄(x)). (2)

Assuming N is a geometric rv, [17] introduced the so-called Marshall-Olkin
distribution. In particular, by taking F̄ as the sf of exponential and Weibull dis-
tributions, they introduced Marshall-Olkin extended exponential (MOEE) and
Marshall-Olkin extended Weibull (MOEW) models, respectively. The follow-
ing Harris pgf, introduced by [13], was used by [8]

PN(s;θ ,k) =
{

θsk

1− θ̄sk

}1/k
, k > 0, 0 < θ < 1, θ̄ = 1−θ , (3)
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to generate the Harris family of survival functions H̄ as

H̄(x;θ ,k) =
(

θ F̄k(x)
1− θ̄ F̄k(x)

)1/k
, k > 0, 0 < θ < ∞ θ̄ = 1−θ . (4)

The df F in Equation (Eq) (2) is called the baseline df and θ is called the tilt
parameter. It is easy to see that hazard rates corresponding to F and H(·;θ ,k),
namely, rF = f/F̄ and rH(.;θ ,k) = h(.;θ ,k)/H̄(.;θ ,k), are related by

rH(x;θ ,k) =
rF(x)

1− θ̄ F̄k(x)
, −∞ < x < ∞, 0 < θ < ∞ k > 0. (5)

Clearly, rH(x;θ ,k) is greater than rF(x) when 0 < θ ≤ 1. It is smaller than
rF(x) when θ ≥ 1. They are the same when θ = 1. We also observe that
for k = 1, pgf (1) reduces to the geometric pgf which leads to Marshall-Olkin
distribution.
Recently, another method of constructing Harris family was proposed by [11].
They showed that the Harris family of distributions can also be constructed
as a proportional failure rate model. They initially generated a new class of
distributions with sf F̄1(x) = F̄0

k
(x), which is a proportional failure rate model

of the initial one. Next, they applied Marshall-Olkin’s transformation to this
new distribution and obtain the following sf:

Ḡ(x) =
θ F̄1(x)

1− θ̄ F̄1(x)
;

that is, Ḡ(x) is the Marshall-Olkin sf having baseline sf F̄1(x). Finally, they
considered the model with sf F̄(x) = Ḡ

1
k (x), which gives the Harris sf.

3 Main results

In Eq (2), let the parameter Θ be an absolutely continuous rv with df G(.) and
pdf g(.). Then, its corresponding unconditional Harris sf is given by

H̄(x;k) =
∫

∞

0
H̄(x;θ ,k)g(θ)dθ ,
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= E[
Θ

1− Θ̄F̄k(x)
]

1
k F̄(x). (6)

We denote the corresponding rv by X∗. Clearly pdf of X∗is given by

h(x;k) =
∫

∞

0
h(x;θ ,k)g(θ)dθ ,

= E[
Θ

(1− Θ̄F̄k(x))k+1 ]
1
k f (x). (7)

[19] have investigated some ageing properties of Marshall-Olkin distribution.
In what follows, we shall compare, more generally, Harris distributions with
their mixtures, i.e.,when k > 0 is arbitrary . Our results enfold [19]’s findings
in this connection.
We now obtain some useful bounds concerning a tilt-mixture Harris family
distribution. First, we note that for any x, t > 0 and k ≥ 1, ( t

1−(1−t)F̄k(x))
1
k is a

concave function of t. Thus, using Jensen’s inequality, where µ = E(Θ), we
have

H̄(x;k) = F̄(x)E(
Θ

1− Θ̄F̄k(x)
)

1
k ≤ F̄(x)(

µ

1− (1−µ)F̄k(x)
)

1
k .

Lemma 3.1. For a non-negative baseline rv X, we haveE(Θ)
1
k ≤ H̄(x;k)

F̄(x) ≤ 1, P(0 < Θ < 1) = 1

1≤ H̄(x;k)
F̄(x) ≤ E(Θ)

1
k , P(Θ≥ 1) = 1

The next theorem gives an upper bound for the maximum error in evaluating
the reliability function, when the baseline df is mistakenly assumed to have
a constant hazard rate. Before this, we need to recall the concept of IMRL
(DMRL). If the life of a component is represented by a rv X , then X is said to
be IMRL (DMRL) if its mean residual life function m(t) = E(X − t|X > t) is
increasing (decreasing) in t ≥ 0. In life testing situations, the concept of MRL
is employed. For example, when new components are initially produced, many
may fail before a time t > 0. In such situations, IMRL (DMRL) is of interest.

Theorem 3.2. Let the baseline rv X be non-negative and H̄0(x;k)= e−
x

µ0 E( Θ

1−Θ̄F̄k(x))
1
k ,
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where µ0 = E(X). If the baseline distribution has DMRL property, then

supx≥0 | H̄(x;k)−H̄0(x;k) |≤

E(Θ)
1
k (1− e−1)(1− γ2

0), P(Θ≥ 1) = 1

(1− e−1)(1− γ2
0), P(0 < Θ < 1) = 1

where γ0 is the coefficient of variation of the baseline distribution.

In the following theorem we obtain an upper bound for the failure proba-
bility of a component after a time t. But, first we need the definition of new
better than used in the second stochastic dominance distributions (NBU(2))
property. NBU(2) is the class of NBU in the increasing concave (icv) order
(see [21]). This class emphasizes that a new item has a larger life length in the
(icv) ordering than does a used one at age t > 0. For more details on NBU(2),
see [15]. More precisely, we have

Definition 3.3. Let Xt = (X−t |X > t) be the residual life of X at time t ≥ 0. X

is said to be NBU(2) if X ≥icv Xt or, equivalently, if
∫ x

0 F̄Xt(u)du≤
∫ x

0 F̄X(u)du

for all x≥ 0.

Theorem 3.4. Let tilt parameter Θ have NBU(2) property and k≥ 1. For non-

negative rv X,

i) Provided that P(0≤Θ≤ 1) = 1, we have

P(X∗ ≥ t |Θ > ϑ)≤ min{F̄(t)+(
F̄k(t)ϑ

1− (1−ϑ)F̄k(t)
)

1
k , 1}.

ii) Provided that P(Θ≥ 1) = 1, we have

P(X∗ ≥ t |Θ > ϑ)≤ min{F̄(t)E(Θ
1
k )+(

F̄k(t)ϑ
1− (1−ϑ)F̄k(t)

)
1
k , 1}.

Remark 3.5. Clearly, taking k = 1, Theorem 3.4 reduces to Theorem 4.1 of
[16].

Example 3.6. Let X be an exponential rv with sf F̄(x) = exp(−x) for x > 0
and let Θ be a rv with sf Ḡ(θ) = e−2θ+2−1

e2−1 for 0 < θ < 1. Clearly, Θ is NBU(2).
For k = 2, Figure 1 shows that

P(X∗ ≥ t |Θ > ν) =
2e−t

e−2ν − e−2

∫ 1

ν

u0.5e−2u

(1− (1−u)e−2t)0.5 du
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≤ min{F̄(t)+(
F̄k(t)ϑ

1− (1−ϑ)F̄k(t)
)

1
k , 1}

= min{e−t +(
e−2tν

1− (1−ν)e−2t )
0.5, 1}.

Figure 1: The green color is the plot of P(X∗ ≥ t |Θ > ν) and the red color is the plot of min{F̄(t)+( F̄k(t)ϑ
1−(1−ϑ)F̄k(t)

)
1
k , 1}

The following theorem gives certain bounds for sf of the residual rv X∗t in
terms of that of X .

Theorem 3.7. For non-negative rv X,

min{E(Θ1/k|X∗ > t),1}F̄t(x)≤ H̄t(x;k)≤ max{E(Θ1/k|X∗ > t),1}F̄t(x).

Remark 3.8. Clearly, taking k = 1, Theorem 3.7 reduces to the results of The-
orem 2.2 of [19] and taking Θ as a degenerate rv and k = 1, it reduces to the
results of Proposition 9 of [14].

In the following theorem we obtain a bound for the expectation of a Harris
family mixture. But, first we need the following lemma and the definition
of harmonically new better than used in expectation (HNBUE) (harmonically
new worse than used in expectation (HNWUE)) property. HNBUE (HNWUE)
is a quantity for describing the aging property of a system. For more details
on HNBUE (HNWUE), see [10]. More precisely, we have

Definition 3.9. Let E(X) = µ . X is said to belong to the class of HNBUE
(HNWUE) if and only if, for all x > 0,∫

∞

x
F̄(u)du≤ (≥)µ exp(

−x
µ

).
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Lemma 3.10. The pdf corresponding to Harris pgf in Eq (1) is

P(N = n) = θ
1
k θ̄

n Γ(n+ 1
k)

n!Γ(1
k)

n = 0,1, ..., 0 < θ < 1, k > 0 integer, (8)

The above pdf together with its properties were also studied by [20].

Theorem 3.11. Let P(0 < Θ≤ 1) = 1 and k > 0 be an integer.

If X is HNBUE, then,

E(X∗)≥ E(X)

kΓ(1
k)

E[Θ
1
k (

Θln(Θ)

Θ̄2 +
1
Θ̄
− 1

2
)].

Example 3.12. Let X be a rv having sf F̄(x) = exp(−2x) for x > 0. Clearly,
X is HNBUE. Let Θ be a rv with pdf g(θ) = 3(1−θ)2 on (0,1). Then, using
Maple software, for k = 2, we obtain

E[Θ0.5(
Θln(Θ)

Θ̄2 +
1
Θ̄
− 1

2
)] =

∫ 1

0
3θ

0.5
θ̄

2(
θ ln(θ)

θ̄ 2 +
1
θ̄
− 1

2
)dθ

' 0.091

Hence,
E(x)

2Γ(1
2)

E[Θ0.5(
Θln(Θ)

Θ̄2 +
1
Θ̄
− 1

2
)]' 0.012

and

E(X∗) =
∫

∞

0
H̄(x;2)dx

=
∫

∞

0

∫ 1

0

3exp(−2x)θ
1
2(1−θ)2

(1− (1−θ)exp(−4x))
1
2
dθdx

' 0.272

which confirms that E(X∗)≥ E(X)

kΓ(1
k )

E[Θ
1
k (Θln(Θ)

Θ̄2 + 1
Θ̄
− 1

2)].
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Inference for a Simple Step-stress Model with Progressively Type-II
Censored Competing Risks Data Under the Exponential Distribution

Ahmadi, M.V.1

1Department of Statistics, University of Bojnord, P. O. Box 1339, Bojnord
94531, Iran

Abstract: In this article, a simple step-stress life-testing experiment in the
presence of exponentially distributed competing risks is considered. After ob-
serving a pre-determined number of failures, the stress of the experiment is
changed. Also, in order to save cost and time, a progressive Type-II censoring
scheme is conducted. Under this setup, the maximum likelihood estimators of
the unknown parameters and the exact conditional distributions of the maxi-
mum likelihood estimators are discussed.

Keywords: Competing risks model, Exponential distribution, Progressive Type-
II censoring, Step-stress accelerated life-testing.

1 Introduction

In many situations in reliability and survival analysis, because of high reliabil-
ity of some products, the lifetime of products under normal operating condi-
tions may not terminate at an adequate time. In such situations, the standard
life-testing methods are not appropriate and accelerated life-testing (ALT) ex-
periments can be used in order to cause rapid failures. Such experiments con-
sist in forcing the products to fail more quickly than under normal operating
conditions. For more details on different ALT models, the reader can be

1Ahmadi, M.V: mv.ahmadi@um.ac.ir
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referred to Nelson and Meeker [20], Nelson [22], Meeker and Escobar [19]
and Bagdonavicius and Nikulin [1]. We focus here on a special case of ALT
known as step-stress testing for which the experimenter chooses one or more
stress factors in life-testing experiment and change the stress levels during the
experiment at pre-specified times or upon the occurrence of a fixed number
of failures. Examples of stress factors include load, pressure, temperature,
voltage or a combination of these factors that directly reduces the lifetime of
products to failure. We consider here a simple step-stress model involving only
two stress levels and the stress changes when a pre-specified number of failures
takes place. It is further assumed that the time-to-failure data come from a
cumulative damage or cumulative exposure model. It is one of the fundamental
models in step-stress testing as introduced by Sedyakin [25]. This model that
connects between the lifetime distribution of units at successive stress levels,
has been further examined and generalized by Bagdonavicius [2] and Nelson
[21]. From the assumptions of cumulative exposure model and exponentially
distributed life, the literature on the simple step-stress model is rather extensive
and the reader is referred to Balakrishnan et al. [7], Balakrishnan and Han
[5], Balakrishnan and Xie [8, 9], Balakrishnan et al. [10] in the presence of
different censoring schemes.

In reliability theory and survival analysis, when there exist more than one
cause of failure (defined as risk factor), assessing the lifetime of products with
an isolated risk factor is not usually possible. Hence, the experimenter needs
to assess the effect of each risk factor in the presence of other risk factors. In
such a situation, the experimenter encounters the problem of competing risks.
For example, the failure of a bearing assembly may be related to bearing fail-
ure or shaft failure. The data for such a competing risks model must come in
a bivariate form composed of the lifetime of the unit and an indicator variable
denoting which risk factor occurred for the unit. In practice, the risk factors
may be statistically independent or dependent. In most situations, however,
for analyzing a competing risks model, the risk factors are assumed to be in-
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dependent. See, for example, David and Moeschberger [12], Crowder [11]
and Sarhan et al. [24]. Here, we consider a problem of competing risks in-
volving two risk factors which are statistically independent. Many researchers
dealt with the statistical inferences based on the simple step-stress model in the
presence of competing risks. For example, assuming the exponential lifetime
distribution for competing risks, we refer the readers to Balakrishnan and Han
[4], Han and Balakrishnan [15] and Ganguly and Kundu [14]. Also, Liu and
Shi [18] focused on the inference for a simple step-stress model with progres-
sively censored competing risks data from Weibull distribution.

In life testing expriments, when for saving time or cost reduction, the com-
plete lifetime of all products on test can not be observed, therefore censored
samples may occur. The most common censoring scheme is Type-II censoring
in which the experiment is terminated after observing a pre-specified number
of failed units. Progressive Type-II censoring that provides higher flexibility
to the experimenter in the design stage, allows to continual removal of a pre-
specified number of un-failed units on test at non-terminal time points. This
allowance may be desirable when a compromise between the reduced time
of the experiment and the observation of at least some extreme lifetimes is
sought. As a prominent work on progressive censoring, we refer the readers to
Balakrishnan and Aggarwala [3]. This censoring scheme can be described as
follows. Consider n identical units being put on a life test at time zero. The life
test terminates as soon as the rth failure is observed and all remaining units are
removed from the life test. When the ith unit fails (i = 1, . . . ,r), Ri randomly
selected units from surviving ones are removed from the life test. Note that
the values of r and (R1, . . . ,Rr) are pre-specified and that ∑

r
i=1 Ri = n− r. As

a special case, if R1 = · · · = Rr−1 = 0 and Rr = n− r, the progressive censor-
ing scheme is reduced to the Type-II censoring scheme, while after running a
progressive censoring scheme with R1 = · · · = Rm = 0, the un-censored life-
time data are observed. The progressively censored data have been used by
many researchers for parametric inferences on various lifetime distributions.
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For example, see Balakrishnan et al. [6], Helu and Samawi [16], Fernández
[13], Khorram and Farahani [17] and Panahi and Asadi [23].

In this paper, we consider the simple step-stress model under a progres-
sive Type-II censoring scheme when the lifetime distributions of different two
risk factors are independently exponentially distributed. In the Section 3, we
present a brief overview of the considered model and obtain the maximum
likelihood estimators (MLEs) of the unknown parameters. We show that these
MLEs do not always exist. Therefore, the exact conditional distributions of
these MLEs are discussed in Section 4.

2 Model description and MLE

A random sample of n identical units is put on a simple step-stress ALT experi-
ment at the initial stress level s1. The successive failure times are then recorded
along with the information about which risk factor caused each failure. When
r units fail, the experiment termites. At the time of r1th failure, the stress level
is increased to s2 and the life test continues until the r2 failures under the stress
level s2 are observed. Note that r1 and r2 are pre-fixed and that r1 + r2 = r,
r1 ≥ 1, r2 ≥ 1 and 2≤ r ≤ n. According to the progressive Type-II censoring
scheme, at the time of ith failure (i = 1, . . . ,r), Ri units are removed from the
experiment. Let the recorded data be denoted by (x1,δ1), . . . ,(xr,δr) where
x = (x1, · · · ,xr) are the observed failure times and δ = (δ1, . . . ,δr) are the ob-
served sequence of the cause of failures with δi = 0 or 1 if ith failure occurs due
to first or second risk factor, respectively. Also, assume that the time-to-failure
by each competing risk follows an independent exponential distribution which
obeys the cumulative exposure model. Let θi j be the mean time-to-failure of
a unit at the stress level si by the risk factor j, with i, j = 1,2. Then, if τ is
the changing time of the stress level from s1 to s2, the cumulative distribution
function (CDF) and probability density function (PDF) of the lifetime of units
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due to the first risk factor are given, respectively, by

F(x) =

F1(x) = 1− exp{− x
θ11
}, if 0 < x < τ,

F2(x) = 1− exp{− τ

θ11
− x−τ

θ21
} if τ ≤ x < ∞,

(1)

and

f (x) =

 f1(x) = 1
θ11

exp{− x
θ11
}, if 0 < x < τ,

f2(x) = 1
θ21

exp{− τ

θ11
− x−τ

θ21
} if τ ≤ x < ∞.

(2)

Similarly, the CDF and PDF of the lifetime of units due to the second risk
factor are given, respectively, by

G(x) =

G1(x) = 1− exp{− x
θ12
}, if 0 < x < τ,

G2(x) = 1− exp{− τ

θ12
− x−τ

θ22
} if τ ≤ x < ∞,

(3)

and

g(x) =

g1(x) = 1
θ12

exp{− x
θ12
}, if 0 < x < τ,

g2(x) = 1
θ22

exp{− τ

θ12
− x−τ

θ22
} if τ ≤ x < ∞.

(4)

Letting θ = (θ1,θ2) with θi = (θi1,θi2) for i = 1,2, it can be shown that the
likelihood function of θ based on the observed data (x,δ ) is formulated as

L(θ ;x,δ ) =C
r1

∏
i=1

[
f1(xi)Ḡ1(xi)

]δi [g1(xi)F̄1(xi)]
1−δi

[
F̄1(xi)Ḡ1(xi)

]Ri

×
r

∏
i=r1+1

[
f2(xi)Ḡ2(xi)

]δi [g2(xi)F̄2(xi)]
1−δi

[
F̄2(xi)Ḡ2(xi)

]Ri .

(5)

for 0 < x1 < · · ·< xr < ∞, where

C = n(n−1−R1)(n−2−R1−R2) · · ·(n− r+1−
r−1

∑
k=1

Rk).

Substituting the Equations (1)-(4) in Equation (5), the likelihood function of θ

under the exponential distribution is derived as

L(θ ;x,δ ) =Cλ
m1
11 λ

r1−m1
12 λ

m2
21 λ

r2−m2
22

× exp{−(λ11 +λ12)U1}exp{−(λ21 +λ22)U2} , (6)
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where m1 = ∑
r1
i=1 δi, m2 = ∑

r
i=r1+1 δi, λi j = 1/θi j, for i, j = 1,2,

D1 =
r1

∑
i=1

xi(Ri +1)+
(

n−
r1

∑
i=1

(Ri +1)
)

xr1,

and

D2 =
r

∑
i=r1+1

(xi− xr1)(Ri +1).

Note that m1 and m2 are the number of units that fail due to the first risk
factor at the stress levels s1 and s2, respectively and hence r1−m1 and r2−m2

are the number of units that fail due to the second risk factor at the stress
levels s1 and s2, respectively. We consider M = (M1,M2) as the random vector
corresponding to the observed integer vector m = (m1,m2). Also, D1 and D2

are the Total Time on Test statistic at the stress levels s1 and s2, respectively.

From the likelihood function in Equation (6), it is clearly observed that the
MLEs of all unknown parameters θ exist if 0 < M1 < r1 and 0 < M2 < r2.
That is, at least one failure caused by each risk factor must be occurred at each
stress level for estimating the parameters θ simultaneously. In this situation,
the log-likelihood function of θ is obtained from Equation (6) as

l(θ ;x,δ ) = logC+m1 logλ11 +(r1−m1) logλ12 +m2 logλ21 +(r2−m2) logλ22

− (λ11 +λ12)D1− (λ21 +λ22)D2,

from which the MLEs of θ11, θ12, θ21, and θ22 are readily obtained as

θ̂11 =
D1

M1
, θ̂12 =

D1

r1−M1
, θ̂21 =

D2

M2
, and θ̂22 =

D2

r2−M2
, (7)

respectively.

3 Conditional Distributions of the MLEs

In order to find the exact conditional distributions of θ̂i j for i, j = 1,2, we ob-
tain the conditional moment generating function (CMGF) of θ̂i j, conditioned
on the event {0 < M1 < r1, 0 < M2 < r2}. Frist, we need the following lemma.
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Lemma 3.1. Let (X ,∆) with X = (X1, . . . ,Xr) and ∆ = (∆1, . . .∆r) be the pro-

gressively Type-II censored competing risks sample from cumulative exposure

PDFs f (x) and g(x) given in (2) and (4), respectively. the joint probability

mass function of M is given by

P(M = m) =
2

∏
i=1

(
ri

mi

)
pmi

i (1− pi)
ri−mi, m1 = 0, . . . ,r1, m2 = 0, . . . ,r2,

where pi = θi2/(θi1 + θi2) for i = 1,2. That is, M1 and M2 are independent

binomial random variables with parameters (r1, p1) and (r2, p2), respectively.

Proof. From Equation (6), we have

P(M = m) = ∑
δ 1∈Q1

∑
δ 2∈Q2

∫
∞

0
· · ·
∫

∞

xr−1

fX ,∆(x,δ ) dxr · · ·dx1

=C
(

r1

m1

)(
r2

m2

)
λ

m1
11 λ

r1−m1
12 λ

m2
21 λ

r2−m2
22

×
∫

∞

0
· · ·
∫

∞

xr−1

2

∏
i=1

exp{−(λi1 +λi2)Ui}dxr · · ·dx1

=
2

∏
i=1

(
ri

mi

)
pmi

i (1− pi)
ri−mi,

where

Q1 =

{
δ 1 = (δ1, . . . ,δr1) : δi = 0,1 for i = 1, . . . ,r1, and

r1

∑
i=1

δi = m1

}
,

and

Q2 =

{
δ 2 = (δr1+1, . . . ,δr) : δi = 0,1 for i = r1 +1, . . . ,r, and

r

∑
i=r1+1

δi = m2

}
.

Theorem 3.2. The conditional PDFs of θ̂11 and θ̂12, conditioned on 0 < M1 <

r1, are, respectively, given by

f
θ̂11

(x) =
1

1− pr1
1 − (1− p1)r1

r1−1

∑
m1=1

(
r1

m1

)
pm1

1 (1− p1)
r1−m1γ

(
x;r1,m1(λ11 +λ12)

)
, (8)
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and

f
θ̂12

(x)=
1

1− pr1
1 − (1− p1)r1

r1−1

∑
m1=1

(
r1

m1

)
pm1

1 (1− p1)
r1−m1γ

(
x;r1,(r1−m1)(λ11+λ12)

)
,

(9)

where

γ(x;α,β ) =
β α

Γ(α)
xα−1e−βx; x > 0,

is the gamma PDF with parameters α > 0 and β > 0.

Proof. Similar to the Equation (6), the joint PDF of (X1,∆1) with X1 =(X1, . . . ,Xr1)

and ∆1 = (∆1, . . . ,∆r1) is readily obtained to be

fX1,∆1(x1,δ1) =C1λ
m1
11 λ

r1−m1
12 exp{−(λ11 +λ12)U1} , (10)

where 0 < x1 < · · ·< xr1, δi ∈ {0,1} for i = 1, . . . ,r1 and that

C1 = n(n−1−R1)(n−2−R1−R2) · · ·(n− r1 +1−
r1−1

∑
k=1

Rk).

Denoting M
θ̂11

(t) for the CMGF of θ̂11, conditioned on {0 < M1 < r1}, we can
write

M
θ̂11

(t) = E(etθ̂11|0 < M1 < r1)

=
r1−1

∑
m1=1

E(etθ̂11|M1 = m1)Pr(M1 = m1|0 < M1 < r1)

=
r1−1

∑
m1=1

∑
δ 1∈Q1

E(etθ̂11|∆1 = δ1)Pr(∆1 = δ1|M1 = m1)Pr(M1 = m1|0 < M1 < r1)

=
1

Pr(0 < M1 < r1)

r1−1

∑
m1=1

∑
δ 1∈Q1

∫
∞

0
· · ·
∫

∞

xr1−1

etD1/m1 fX1,∆1(x1,δ1) dxr1 · · ·dx1.

Upon substituting fX1,∆1(x1,δ1) from Equation (1) into the above expression
and carrying out the necessary integrations, we obtain

M
θ̂11

(t)=
1

1− pr1
1 − (1− p1)r1

r1−1

∑
m1=1

(
r1

m1

)
pm1

1 (1− p1)
r1−m1

(
1− t

m1(λ11 +λ12)

)−r1

,

for t < λ11 + λ12. Applying the inversion theorem of a moment generating
function, the conditional PDF of θ̂11 in Equation (1) is derived. Similarly, the
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conditional PDF of θ̂12 in Equation (2) is proved which the respective proof is
omitted for brevity.

Theorem 3.3. The conditional PDFs of θ̂21 and θ̂22, conditioned on 0 < M2 <

r2, are, respectively, given by

f
θ̂21

(x) =
1

1− pr2
2 − (1− p2)r2

r2−1

∑
m2=1

(
r2

m2

)
pm2

2 (1− p2)
r2−m2γ

(
x;r2,m2(λ21 +λ22)

)
,

(11)

and

f
θ̂22

(x)=
1

1− pr2
2 − (1− p2)r2

r2−1

∑
m2=1

(
r2

m2

)
pm2

2 (1− p2)
r2−m2γ

(
x;r2,(r2−m2)(λ21+λ22)

)
.

(12)

Proof. From Equations (6) and (1), the conditional joint PDF of (X2,∆2), con-
ditioned on (X1,∆1), with X2 =(Xr1+1, . . . ,Xr) and ∆2 =(∆r1+1, . . . ,∆r) is read-
ily obtained to be

fX2,∆2(x2,δ2) =C2λ
m2
21 λ

r2−m2
22 exp{−(λ21 +λ22)U2} , (13)

where 0 < xr1+1 < · · ·< xr, δi ∈ {0,1} for i = r1 +1, . . . ,r and that

C2 = (n− r1−
r1

∑
k=1

Rk)(n− r1−1−
r1+1

∑
k=1

Rk) · · ·(n− r+1−
r−1

∑
k=1

Rk).

Denoting M
θ̂21

(t) for the CMGF of θ̂21, conditioned on {0 < M2 < r2}, we can
write

M
θ̂21

(t) = E(etθ̂21|0 < M2 < r2)

=
r2−1

∑
m2=1

E(etθ̂21|M2 = m2)Pr(M2 = m2|0 < M2 < r2)

=
r2−1

∑
m2=1

∑
δ 2∈Q2

E(etθ̂21|∆2 = δ2)Pr(∆2 = δ2|M2 = m2)Pr(M2 = m2|0 < M2 < r2)

=
1

Pr(0 < M2 < r2)

r2−1

∑
m2=1

∑
δ 2∈Q2

∫
∞

xr1

· · ·
∫

∞

xr−1

etD2/m2 fX2,∆2(x2,δ2) dxr · · ·dxr1+1.
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Upon substituting fX2,∆2(x2,δ2) from Equation (5) into the above expression
and carrying out the necessary integrations, we obtain

M
θ̂21

(t)=
1

1− pr2
2 − (1− p2)r2

r2−1

∑
m2=1

(
r2

m2

)
pm2

2 (1− p2)
r2−m2

(
1− t

m2(λ21 +λ22)

)−r2

,

for t < λ21 + λ22. Applying the inversion theorem of a moment generating
function, the conditional PDF of θ̂21 in Equation (2) is derived. Similarly, the
conditional PDF of θ̂22 in Equation (3) is proved which the respective proof is
omitted for brevity.

From Theorems 3.2 and 3.3, we conclude that the conditional distribution of
θ̂i j for i, j = 1,2, given 0 < Mi < ri, does not depend on the values (R1, . . . ,Rr)

which is based on the lack of memory property of exponential distribution.
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Sharing k-out-of-n Systems
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Abstract: This paper presents a copula-based approach to scheduling main-
tenance and inspection planning for load-sharing k-out-of-n systems. The
system is monitored at periodic times and corrective and preventive mainte-
nance actions are carried out in response to the observed state process X(t)

describing the total number of failed components (decision variable). Assum-
ing a threshold-type policy, the paper aims at minimizing the long-run average
maintenance cost rate by determining appropriate inspection intervals and the
preventive maintenance threshold. We illustrate the procedure for the case
when the components’ lifetimes conform to a Weibull distribution.

Keywords: Generic FGM copula model, Inspection, Load-sharing k-out-of-n
system, Maintenance.

1 Introduction

In the last three decades the bulk of studies have been performed on both re-
liability modelling and maintenance optimisation problem for deteriorating
multi-component systems. Existing models either turn their attention to in-
spection policy or preventive replacement policy, or have neglected failure in-
teraction of components [1, 3, 6], which, nevertheless, is often not the case.

1Seyedi, F.: farzaneseyedi97@gmail.com
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This paper aims to develop these two themes through the use of a developed
FGM copula function. The approach explored here in preference to models
[4, 5, 7, 8, 9, 10] allows not only the reliability modeling of a load-sharing
k-out-of-n system, but also the joint determination of optimal inspection and
preventive replacement policy for such systems. Also, it encompasses and
examines in a unifying model some of the characteristics that have not been
addressed or previously studied in isolation.

2 Assumption

The model is developed in the following setting:

• The lifetimes of components are positively dependent and modelled through
a generic FGM copula function [2].

• The decision maker inspects the system according to policy Π= {kτ : k ∈ N}.

• The number of failed components is adopted as a basis for decision mak-
ing.

• The decision maker’s actions includes two types of actions: (i) no action
and (ii) perfect repair.

• The lifetimes of components conform to a Weibull distribution with the
shape parameter and the scale parameter α and β .

3 Model

The system maintained is a load-sharing k-out-of-n system. The common fea-
ture of such systems is that (i) the failure of components leads to an increased
tendency for remaining surviving components to fail and (ii) they fails if at
least k of the n components fail. In present setting, the components’ life-
times T = (T1,T2, · · · ,Tn) are modelled by an n-variate FGM copula function
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Figure 1: The survival function F̄3:5(t;θ) for different θ ∈ {0,0.1,0.5,0.9}.

C(u1,u2, · · · ,un;θ):

C(u1,u2, . . . ,un;θ) =
n

∏
j=1

u j× (1+θ ∑
1≤ j<k≤n

(1−u j)(1−uk)+

θ ∑
1≤ j<k<l≤n

(1−u j)(1−uk)(1−ul)+ . . .+θ (1−u1)(1−u2) . . .(1−un))

Proposition 3.1. Let F̄k:n(t;θ) denote the survival function of the k-order statis-

tics Tk:n of lifetimes T1,T2, · · · ,Tn given the dependence factor θ ∈ [0,1], then

F̄k:n(t;θ) =
k−1

∑
r=0

(
n
r

)
Fr(t)F̄(n−r)(t)(1+θψn(r; t)) (1)

where

ψn(r; t) =
n

∑
v=2

∑
A(v)

(
x1

n− r

)(
x2

r

)
(−1)x1Fx1(t)F̄x2(t)

and A(v) is the set of non-negative integer solutions to the equation x1+x2 = v.

Proof. For proof see Ref. [2].

Figure 1 illustrates the behavior of the survival function of an 3-out-of-5
system for different dependence degrees θ ∈ {0,0.1,0.5,0.9}.

In this context, the total number of failed components (system state) de-
scribed by a counting process X(t) (t ≥ 0) is adopted as a basis for mainte-
nance decision making. To reveal the true state of components, the decision
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maker inspects the system according to a periodic policy Π= {kτ : k = 1,2, · · ·}.
The actions taken after an inspection are completely determined by the system
state X(t) observed in one of exclusive subsets Ai(`) (i = 0,1) and A2. Let the
starting state of the system be X(0)= x, that is, the system starts operating with
n−x components (x= 0,1, · · · ,k−1). Then the rules used are that (i) no action
(a0) is taken if the system state is found in subset A0(`) = {x,x+1, · · · , `−1};
(ii) it is returned to the ’good as new’ state (preventive replacement) (a1) if the
system is observed in subset A1(`) = {`,`+1, · · · ,k−1} and (iii) it is replaced
on failure (a2) (X(t) ∈ A2 = {k,k+1, · · · ,n}). As noted, the decision process
is thus driven by the excursions of the state process X(t) into the state space Ω

partitioned into non-overlapping sets Ai: Ω = A0(`)∪A1(`)∪A2. If the dou-
bleton 〈a,X(t)〉 denotes the action taken in response to the underlying process
X(t), then

〈a,X(t)〉=


a0, X(t) ∈ A0;
a1, X(t) ∈ A1;
a2, X(t) ∈ A2.

4 Long-run average cost rate

In present approach, the average cost rate is adopted as a measure of policy for
optimizing maintenance policies determined by the optimal period of inspec-
tion τ∗ and the optimal replacement threshold `∗. The approach rests on the
identification of an embedded renewal process defined by failure epochs and
this allows the application of renewal-reward theorem.

4.1 The embedded renewal process

In the case of failure the instants of unplanned replacement are regeneration
points, and these sequence of regeneration points define a renewal process.
A cycle is time between failures and is thus defined by the occurrence of the
unplanned replacements after failures.
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This structure allows the use of the renewal-reward argument. The average
cost rate given the starting state X(0) = x is

Cx(τ;`) =
C x(τ;`)
`x(τ;`)

(2)

where C x is the expected cost per cycle and `x is the expected cycle length.

4.2 Expected cost per cycle

The costs incurred in a cycle are random. Let Cx(τ;`) denote the cost per cycle
with starting state X(0) = x. Upon inspection at τ if the system state X(τ) is
found in A0(`) the cyclic cost consists of an inspection cost C0 and future costs
CX(τ)(τ;`) incurred by taking no action. On finding the system state X(τ) in
A1(`) the cost per cycle is made up from an inspection cost and a replacement
cost CR and future costs C0(τ;`) incurred by a planned replacement which
resets the process X(τ) to zero. On failure at regeneration point Tk:n(< τ)

the costs incurred include an unplanned replacement cost CF(>CR). In other
words,

Cx
τ = (C0 +CX(τ)

τ )I(X(τ) ∈ A0( j))+
(
CR +C0

τ

)
I(X(τ) ∈ A1( j))

+CFI(X(τ) ∈ A2)

Taking the expectation follows that

C x(τ;`) = E [Cx(τ;`)] =
`−1

∑
r=x

(C0 +C r(τ;`))πxr(t;θ)

+
(
CR +C 0(τ;`)

) k−1

∑
r=`x

πxr(τ;θ))+CFFk−x:n−x(τ) (3)

where `x = max(`,x) and πxr(t;θ) denotes the transition probability of X :

πxr(τ;θ) =

(
n

r

)
Fr(τ)(1−F(τ))n−r (1+θψn(r;τ))
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4.3 Expected cycle length

Let Lx(τ;`) denote the cycle length starting from X(0) = x. The expected cycle
length is obtained with the same argument as the expected cost: on inspection
if the system state is observed in A0(`) the cycle consists of a full period of
inspection τ and the remaining cycle length LX(τ)(τ;`) starting from current
state X(τ). On observing the system in A1(`) the cycle is made up from a full
period τ and the remaining cycle length L0(τ;`) starting from updated state
zero. On failure at Tk:n the cycle length becomes complete. In the view of
above argument, we have

Lx
τ =

(
τ +LX(τ)

τ

)
I (X(τ) ∈ A0)+

(
τ +L0

τ

)
I (X(τ) ∈ A1)

+Tn−x:n−xI (X(τ) ∈ A2)

`x(τ;`) = E [Lx(τ;`)] =
`−1

∑
r=x

(τ + `x(τ;`))πxr(τ;θ)+
(
τ + `0(τ;`)

) k−1

∑
r=`x

πxr(τ;θ))

+µn−x(k− x,τ;θ) (4)

where µn−x(k− x,τ;θ) denotes the mean time to failure of an k− x-out-of-
(n− x) system within the first inspection epoch. Our purpose is to determine
optimal inspection and threshold-type replacement policy implemented by op-
timal maintenance parameters (τ∗, `∗) = argmin(τ,`)∈(0,∞)×(0,∞)Cx(τ;`).

5 Specific models

In this section we show how some models emerge as special cases. They are
recovered by the appropriate choice of the threshold parameter `.

5.1 〈a,X(t)〉= {a0,a2}

The repair model with two kinds of repair action: no action (a0) and corrective
replacement (a2) is recovered if `= k. In this case the expected cost per cycle
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(3) and the expected cycle length (4) respectively become

C x(τ;k) =
k−1

∑
r=x

(C0 +C r(τ;k))πxr(t;θ)+CFFk−x:n−x(τ)

and

`x(τ;k) =
k−1

∑
r=x

(τ + `x(τ;k))πxr(τ;θ)+µn−x(k− x,τ;θ).

5.2 〈a,X(t)〉= {a1,a2}

The repair actions of the model are restricted to two kinds of action: preventive
replacement (a1) and corrective replacement (a2) if we set `= x. In this case
the expected cost per cycle (3) and the expected cycle length (4) respectively
become

C x(τ;x) =
(
CR +C 0(τ;x)

) k−1

∑
r=x

πxr(τ;θ))+CFFk−x:n−x(τ)

and

`x(τ;x) =
(
τ + `0(τ;x)

) k−1

∑
r=x

πxr(τ;θ))+µn−x(k− x,τ;θ)

6 Main results

For the numerical illustration of the model we consider a 3-out-of-4 system
and set (α,β ) = (2,2) and (C0,CR,CF) = (0.5,5,10).

Table 1: Optimal solutions for different θ .

θ τ∗ `∗ C0(τ∗, `∗)

0.0a 0.493 2 1.985

0.5 0.490 2 1.989

0.9 0.486 2 1.993
aIndependent components.

Table 1 illustrates optimal solutions for different dependence degrees θ

given the starting state X(0) = 0. The model suggests that for θ = 0.5, to
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Figure 2: C0(τ;`) for different threshold values ` ∈ {0,1,2,3}. The solid line, dotted line, dash-dotted line, dashed

line correspond to `= 2, `= 3, `= 1 and `= 0.

reveal the true state of components and take an appropriate action, inspections
should be scheduled with the optimal period of inspection τ∗ = 0.49: on in-
spection if at most one component is found in failed state no action should
be taken, otherwise either a preventive replacement should be scheduled if
two components are observed in failed state (A1(`

∗) = {2}), or a corrective
replacement has to be carried out upon failure. These policies incur the mini-
mum cost C0(τ∗, `∗) = 1.989. The results reveal that the optimal replacement
threshold `∗ is not sensitive to θ , but increasing θ makes inspections more fre-
quent. As noted, the model penalizes a costly strategy which favors too many
inspections as dependence degree decreases. Also, an evolution of the average
cost rate for different threshold values ` ∈ {0,1,2,3} and dependence values
θ ∈ {0,0.5} are illustrated by Figure 2 and Figure 3.

Table 2: Optimal solutions for different x.

x τ∗ `∗ Cx(τ∗, `∗)

0 0.490 2 1.989

1 0.463 2 2.037

2 0.433 2 2.097

The behavior of optimal solutions is examined with respect to the redun-
dancy level of the system (starting state x) for θ = 0.5 (see Table 2). The
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Figure 3: C0(τ;`) for different threshold values ` ∈ {0,1,2,3}. The solid line, dotted line, dash-dotted line, dashed

line correspond to `= 2, `= 3, `= 1 and `= 0.

results reveal that the optimal replacement threshold is not sensitive to x, but
decreasing redundancy level results in an increase in both inspection frequency
and maintenance cost.
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Tests of Exponentiality for the Progressively Type-II Censored Sample: new
test and comparative study
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Abstract: A new divergences are defined by using Tsallis divergence and a
measure of discrepancy between equilibriums associated with two distribu-
tions is proposed. Then utilizing the progressively Type-II censored sample,
we construct goodness of fit tests for exponentiality based on the estimation of
proposed divergences. To investigate the performance of the mentioned tests,
Monte Carlo simulations are performed. The powers of the proposed tests are
then compared with other existing tests. Finally, an example is used of the
proposed tests.

Keywords: Cumulative residual Tsallis divergence, Monte Carlo simulation,
Progressively Type-II censored sample.

1 Introduction

Because of the importance of exponential distribution in reliability and life-
time models, many tests with complete samples and some procedures under
censored data have been presented in previous studies, attempting to deter-
mine the appropriateness of an exponential model for a given dataset. Type-I
and Type-II censoring schemes are the most popular ones among the different
censoring schemes. One of the disadvantages of these censoring schemes is

1Habibirad, A.: ahabibi@um.ac.ir
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the impossibility to withdraw units during the experiment, so a generalization
of the classical Type-II censoring scheme, known as the progressive Type-II
censoring scheme (PCS Type-II), was proposed by analysts to pull back units
amid the experiment.
There are several goodness of fit tests available in the literature based on cen-
sored data for exponentiality test. [15] introduced a test statistic for the expo-
nential distribution and obtained the exact distribution of the test statistic under
the null hypothesis. [8] extended the goodness of fit test based on Kullback–
Leibler (KL) information for PCS Type-II data for three distributions. [10]
developed some goodness of fit tests for the exponential distribution based on
Type-I censored samples. Recently; [11] generalized the cumulative resid-
ual KL (CRKL) information to the censored case and used the estimate of
modified version of CRKL as a goodness of fit test statistic with the Type-II
censored data. [2] developed a general goodness of fit test for Type-II cen-
sored data by using a new estimate of KL information for Type-II censored
data. Also, they considered testing for exponentiality under Type-II censored
data as a special case of this general test. [5] constructed two goodness of fit
tests based on the CRKL and cumulative KL (CKL) information for testing
exponentiality with PCS Type-II data. [1] introduced a general goodness of fit
test for PCS Type-II data based on a new estimate of KL information and then
used the proposed test statistic for testing exponentially based on PCS Type-II
data.
Let X be a non negative absolutely continuous random variable having cumu-
lative distribution function (cdf) F , and the probability density function (pdf)
f . [13] introduced a new uncertainty measure, the cumulative residual entropy
(CRE), which for a non negative random variable X is defined as follows:

CRE(F) =−
∫

∞

0
F̄(x) ln F̄(x)dx.

Similar to the CRE, [7] proposed the cumulative entropy (CE) through

CE(F) =−
∫

∞

0
F(x) lnF(x)dx.
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Consider two nonnegative and absolutely continuous random variables X and
Y with pdfs f and g, cdfs F and G, respectively. Then, the KL informations as
a measure of discrepancy between f and g is given by

KL( f : g) =
∫

∞

0
f (x) ln

f (x)
g(x)

dx,

and the Tsallis divergence between f and g is defined as (see Tsallis, 1988)

DT ( f ,g) =
1

α−1

[∫
∞

0
f α(x)g1−α(x)dx−1

]
, α(6= 1)> 0. (1)

[5] suggested an extension of the KL information to the survival function,
which is CRKL, as follows:

CRKL(F : G) =
∫

∞

0
F̄(x) ln

F̄(x)
Ḡ(x)

dx− [E(X)−E(Y )],

where F̄(x) and Ḡ(x) are the survival functions of random variables X and Y ,
respectively. [12] considered another extension to the cumulative distribution,
which is called CKL and defined as follows:

CKL(F : G) =
∫

∞

0
F(x) ln

F(x)
G(x)

dx− [E(Y )−E(X)].

Let w(t) be a non-negative function, so that 0 < E(w(t)) < ∞, then we can
define the weighted random variable X∗ with density function

f ∗(t) =
w(t) fX(t)
E(w(X))

, t ≥ 0. (2)

The equilibrium distribution results as a special case when w(t) = 1
rX (t)

, where

rX(t) =
fX (t)
F̄X (t)

is failure rate function of X ; then X∗ is said the equilibrium ran-

dom variable associated with X . The pdf of X∗ is f ∗(t) = F̄X (t)
E(X) .

Let f ∗ and g∗ be the equilibrium pdfs respectively associated with f and g.
Then, we define the Tsallis divergence based on equilibrium distributions as
follows

DT ( f ∗,g∗) =
1

α−1

[
Eα−1(Y )
Eα(X)

∫
∞

0
F̄α(x)Ḡ1−α(x)dx−1

]
, α(6= 1)> 0. (3)

The testing of interest in this article, is

H0 : F(x) = F0(x) vs H1 : F(x) 6= F0(x),
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where F0(x) = 1− exp(− x
θ
) with x > 0, θ > 0, and θ is the unknown pa-

rameter.
The performance of the proposed tests is compared to proposed tests of [4]
and [1] for PCS Type-II data.

2 Extentions of Tsallis divergence and test statistics

In this section, the new measures of distance between two distributions that
are similar to Tsallis divergences are defined.

Definition 2.1. Let X and Y be two non negative and absolutely continuous
random variables with cdfs F and G and pdfs f and g, respectively. Then
cumulative residual Tsallis (CRT) and cumulative Tsallis (CT) divergence be-
tween these distributions are respectively as follows

CRT (F : G)=
1

α−1

[∫
∞

0
F̄α(x)Ḡ1−α(x)dx−αE(X)− (1−α)E(Y )

]
, 0<α < 1.

(4)

CT (F : G) =
1

α−1

[∫
∞

0
Fα(x)G1−α(x)dx

− α

∫
∞

0
F(x)dx− (1−α)

∫
∞

0
G(x)dx

]
, 0 < α < 1. (5)

Lemma 2.2. CRT(F:G)≥ 0 and equality holds iff F = G.

Proof. By applying the Hölder inequality, we obtain∫
∞

0
F̄α(x)Ḡ1−α(x)dx≤

(∫
∞

0
F̄(x)dx

)α(∫ ∞

0
Ḡ(x)dx

)1−α

, 0 < α < 1, (6)

and by using the Young inequality, we get(∫
∞

0
F̄(x)dx

)α(∫ ∞

0
Ḡ(x)dx

)1−α

≤ α

∫
∞

0
F̄(x)dx+(1−α)

∫
∞

0
Ḡ(x)dx. (7)

Therefore, by (2) and (3) and dividing by α−1, the desired inequality follows.
In the Hölder inequality, equality holds iff F̄ = cḠ (c is a positive constant) and
in the Young inequality, equality holds iff

∫
∞

0 F̄(x)dx=
∫

∞

0 Ḡ(x)dx. Thus, c= 1
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and
CRT (F : G) = 0 iff F = G.

Lemma 2.3. CT(F:G)≥ 0 and equality holds iff F = G.

Proof. The proof is similar to the Lemma 2.2.

Remark 2.4. Note that limα→1CRT =CRKL and limα→1CT =CKL.

2.1 Testing procedures based on the extentions of Tsallis divergence

In this section, test statistics are constructed for testing exponentiality with
the PCS Type-II data and then some competing tests are considered to be
compared with the mentioned tests. Accordingly, letting F(x) = Fm:n(x) (the
cdf estimator based on progressively Type-II right censored data) and G(x) =

F0(x) in (1), we have

CRT (Fm:n : F0) = − θ

(α−1)2

[m−1

∑
i=0

(1−αi:m:n)
α(e−

xi:m:n
θ

(1−α)− e−
xi+1:m:n

θ
(1−α))

]
− α

α−1

[m−1

∑
i=0

(1−αi:m:n)(xi+1:m:n− xi:m:n)

]
+ θ(1− e−

xm:m:n
θ ), (8)

where α0:m:n = x0:m:n = 0 and αi:m:n is the expected value of the Type-II pro-
gressively censored order statistic from the uniform distribution on (0,1), which
is given by [3]. Dividing (7) by

∫ xm:m:n
0 (1−Fm:n(x))dx, we obtain the proposed

test as follows:

CRTmn = − θ̂

(α−1)2

[
∑

m−1
i=0 (1−αi:m:n)

α(e−
xi:m:n

θ̂
(1−α)− e−

xi+1:m:n
θ̂

(1−α)
)

∑
m−1
i=0 (1−αi:m:n)(xi+1:m:n− xi:m:n)

]
+

θ̂(1− e−
xm:m:n

θ̂ )

∑
m−1
i=0 (1−αi:m:n)(xi+1:m:n− xi:m:n)

− α

α−1
, (9)

where θ̂ = 1
m ∑

m
i=1(Ri + 1)xi:m:n is the maximum likelihood estimate (MLE)

based on the PCS Type-II sample.



The 7th Seminar on Reliability Theory and its Applications 40

Similarly, for (2), we have

CT (Fm:n : F0) =
1

(α−1)

[m−1

∑
i=1

(αi:m:n)
α

∫ xi+1:m:n

xi:m:n

(1− e−
x(1−α)

θ )dx
]

− α

α−1

[m−1

∑
i=1

(αi:m:n)(xi+1:m:n− xi:m:n)

]
+

∫ xm:m:n

0
(1− e−

x
θ )dx. (10)

Dividing (10) by
∫ xm:m:n

0 Fm:n(x)dx, we obtain the proposed test as follows:

CTmn =
1

(α−1)

[
∑

m−1
i=1 (αi:m:n)

α
∫ xi+1:m:n

xi:m:n
(1− e−

x(1−α)

θ̂ )dx

∑
m−1
i=1 (αi:m:n)(xi+1:m:n− xi:m:n)

]
+

∫ xm:m:n
0 (1− e−

x
θ̂ )dx

∑
m−1
i=1 (αi:m:n)(xi+1:m:n− xi:m:n)

− α

α−1
, (11)

where θ̂ is the MLE of based on the PCS Type-II sample.

2.2 Testing procedures based on equilibrium distributions for the Tsallis divergences

Similar using (3) based on the PCS Type-II data, we obtain the proposed test
as follow:

D∗Tmn =
1

α−1

[
θ̂ α−1 ∫ xm:m:n

0 (1−Fm:n(x))αe−
x
θ̂
(1−α)dx

(
∫ xm:m:n

0 (1−Fm:n(x))dx)α −1

]

= − θ̂ α

(α−1)2

[
∑

m−1
i=0 (1−αi:m:n)

α(e−
xi:m:n

θ̂
(1−α)− e−

xi+1:m:n
θ̂

(1−α)

(∑m−1
i=0 (1−αi:m:n)(xi+1:m:n− xi:m:n))α

]
− 1

α−1
, (12)

where α0:m:n = x0:m:n = 0 and θ̂ is the MLE of the PCS Type-II sample.
Note that all the three proposed test statistics are scale-invariant.
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3 Simulation study

For large values of the proposed test statistics, the null hypothesis will be re-
jected. The power values of the proposed tests depend on two things, the α

values and type of failure rate function of alternatives. Thus, the alternatives
are selected according to the type of failure rate function as follows:

• Increasing failure rate (IFR): Gamma and Weibull (shape parameter 2),

• Decreasing failure rate (DFR): Gamma and Weibull (shape parameter 0.5),

• Non-monotone failure rate (NFR): Log-normal (shape parameter 0.5), Log-
normal (shape parameter 1).

Since the α values have an important role in determining the power of the
proposed tests, then the α value that maximizes the power, is considered ac-
cording to the type of failure rate function. Moreover since the CTmn and
CRTmn statistics have not good performance, respectively, for alternatives with
IFR and DFR functions, thus the CTmn and CRTmn statistics are recommended
for DFR function and IFR function, respectively. The α value, for DT ∗mn and
CRTmn statistics, when the alternatives have the IFR function, is suggested to
be 2 and 0.01, respectively and for D∗Tmn

and CTmn statistics, when the alter-
natives have the DFR function, is suggested to be 0.01. For alternatives with
NFR functions, the α value is suggested 0.01 for the proposed statistics.
The power values are determined for the 27 censoring schemes used by [9].
These censoring schemes are given in Table 1. To obtain the power values
50,000 random samples for several sample sizes and PCS, are generated. Also
by following [1], the values of w which maximize the power of the TA statistic
are chosen.
Tables 2–4 present power values of the proposed tests and the existing tests at
the significance level 0.10 based on the type of failure rate function. In these
tables, the proposed test of [4]. is denoted by T . According to these tables,
it can be said that the proposed tests are evidency consistent because with in-
creasing sample size, the test power close to 1. Table 2 (for alternatives with



The 7th Seminar on Reliability Theory and its Applications 42

IFR functions) indicates that, almost in the most cases, the TA statistic has
higher power than other tests. Also, we can see that, the difference of powers
of the CRTmn and TA statistics do not differ much. Although the TA statistics
have good powers. One of the disadvantages of this statistic is that we should
calculate the power values for three different values of window size w, and,
for different censoring schemes, there is not a window size w of same value.
While if [4] had considered w values proposed by [1] for each censorship plan,
they would have had higher powers compared to TA. Since usually the CRTmn

statistic for the scheme R= (n−m,0, . . . ,0) shows higher power than the other
schemes, so this statistic for early censoring is recommended.
In Table 3 for alternatives with DER functions, the CTmn statistic has higher
power than D∗Tmn

and the other existing tests except in the censoring scheme 24.
In this table, the scheme R = (n−m,0, . . . ,0) generally indicates better power
than the other schemes. It can be concluded that early censoring situations
seem to possess higher power. Therefore for alternatives with DER functions,
the use of CTmn statistic for the case of early censoring is recommended. Table
4 shows that the TA and CRTmn statistics have approximately higher powers
than the other tests, but for different censoring schemes a general conclusion
cannot be suggested.

4 Illustrative example

In this section, the proposed tests procedure are investigated by an example.
In this example, the real dataset with n = 19 and m = 8 is considered, Nelson
(1982) reported data on times to breakdown of an in-sulating fluid in an ac-
celerated test which was done at different test voltages. From these data, [14]
produced a PCS Type-II sample of size from observations which was recorded
at 34 kilovolts. These progressively censored data are given in Table 5. Table
6 indicates the critical values and test statistics. Based on Table 6, all of the
tests at the significance level 0.10, show that this progressively Type-II right
censored sample comes from an exponential distribution.
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Table 1: Progressive censoring schemes used in the Monte Carlo simulations

Scheme No. n m (R1, . . . ,Rm)

[1] 20 8 R1 = 12,Ri = 0 for i 6= 1

[2] R8 = 12,Ri = 0 for i 6= 8

[3] R1 = R8 = 6,Ri = 0 for i 6= 1,8

[4] 12 R1 = 8,Ri = 0 for i 6= 1

[5] R12 = 8,Ri = 0 for i 6= 12

[6] R3 = R5 = R7 = R9 = 2,Ri = 0 for i 6= 3,5,7,9

[7] 16 R1 = 4,Ri = 0 for i 6= 1

[8] R16 = 4,Ri = 0 for i 6= 16

[9] R5 = 4,Ri = 0 for i 6= 5

[10] 40 10 R1 = 30,Ri = 0 for i 6= 1

[11] R10 = 30,Ri = 0 for i 6= 10

[12] R1 = R5 = R10 = 10,Ri = 0 for i 6= 1,5,10

[13] 20 R1 = 20,Ri = 0 for i 6= 1

[14] R20 = 20,Ri = 0 for i 6= 20

[15] Ri = 1 for i = 1,2, . . . ,20

[16] 30 R1 = 10,Ri = 0 for i 6= 1

[17] R30 = 10,Ri = 0 for i 6= 30

[18] R1 = R30 = 5,Ri = 0 for i 6= 1,30

[19] 60 20 R1 = 40,Ri = 0 for i 6= 1

[20] R20 = 40,Ri = 0 for i 6= 20

[21] R1 = R20 = 10,R10 = 20,Ri = 0 for i 6= 1,10,20

[22] 40 R1 = 20,Ri = 0 for i 6= 1

[23] R40 = 20,Ri = 0 for i 6= 40

[24] R2i−1 = 1,R2i = 0 for i = 1,2, . . . ,20

[25] 50 R1 = 10,Ri = 0 for i 6= 1

[26] R50 = 10,Ri = 0 for i 6= 50

[27] R1 = R50 = 5,Ri = 0 for i 6= 1,50
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Table 2: Power of the proposed tests for the alternatives with the IFR function at the significance level 0.10 for several

schemes.

W(2) G(2)

Scheme No. D∗Tmn
CRTmn T TA D∗Tmn

CRTmn T TA

[1] 0.858 0.893 0.892 0.896 0.610 0.614 0.648 0.231

[2] 0.643 0.661 0.634 0.627 0.488 0.457 0.459 0.486

[3] 0.776 0.748 0.725 0.712 0.549 0.513 0.512 0.454

[4] 0.879 0.938 0.916 0.949 0.684 0.613 0.722 0.484

[5] 0.811 0.803 0.783 0.799 0.612 0.533 0.583 0.603

[6] 0.807 0.898 0.891 0.949 0.633 0.573 0.675 0.226

[7] 0.896 0.959 0.958 0.976 0.714 0.658 0.765 0.651

[8] 0.900 0.903 0.922 0.920 0.691 0.658 0.686 0.688

[9] 0.914 0.958 0.970 0.983 0.702 0.680 0.772 0.633

[10] 0.939 0.942 0.953 0.965 0.666 0.756 0.814 0.232

[11] 0.726 0.716 0.678 0.683 0.594 0.538 0.550 0.597

[12] 0.817 0.841 0.812 0.815 0.684 0.634 0.646 0.527

[13] 0.963 0.988 0.988 0.995 0.765 0.791 0.899 0.670

[14] 0.945 0.933 0.918 0.922 0.794 0.724 0.759 0.806

[15] 0.905 0.963 0.970 0.991 0.768 0.756 0.862 0.465

[16] 0.977 0.996 0.998 1.000 0.800 0.827 0.942 0.882

[17] 0.992 0.994 0.991 0.990 0.892 0.842 0.879 0.904

[18] 0.993 0.997 0.996 0.995 0.900 0.863 0.902 0.901

[19] 0.979 0.989 0.993 0.998 0.756 0.850 0.934 0.591

[20] 0.941 0.930 0.898 0.901 0.825 0.747 0.776 0.834

[21] 0.980 0.978 0.970 0.974 0.857 0.816 0.851 0.738

[22] 0.992 0.999 1.000 1.000 0.815 0.906 0.980 0.945

[23] 0.998 0.999 0.998 0.996 0.957 0.927 0.933 0.965

[24] 0.964 0.992 0.999 1.000 0.773 0.871 0.960 0.849

[25] 0.994 0.999 1.000 1.000 0.831 0.924 0.991 0.981

[26] 1.000 1.000 1.000 1.000 0.971 0.956 0.973 0.985

[27] 1.000 1.000 1.000 1.000 0.960 0.961 0.979 0.984

For each censoring scheme, the greatest powers are in bold.
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Table 3: Power of the proposed tests for the alternatives with the DFR function at the significance level 0.10 for

several schemes.

W(0.5) G(0.5)

Scheme No. D∗Tmn
CTmn T TA D∗Tmn

CTmn T TA

[1] 0.661 0.717 0.064 0.303 0.420 0.467 0.014 0.161

[2] 0.005 0.291 0.069 0.213 0.010 0.219 0.047 0.166

[3] 0.002 0.448 0.073 0.252 0.005 0.323 0.040 0.177

[4] 0.750 0.806 0.341 0.476 0.455 0.511 0.097 0.230

[5] 0.002 0.590 0.272 0.387 0.006 0.398 0.134 0.250

[6] 0.752 0.792 0.344 0.489 0.496 0.546 0.109 0.258

[7] 0.812 0.869 0.416 0.605 0.471 0.544 0.104 0.291

[8] 0.069 0.847 0.402 0.564 0.016 0.613 0.147 0.318

[9] 0.830 0.889 0.437 0.637 0.509 0.587 0.111 0.315

[10] 0.728 0.787 0.217 0.442 0.448 0.508 0.050 0.227

[11] 0.003 0.345 0.152 0.270 0.005 0.278 0.112 0.226

[12] 0.003 0.672 0.187 0.381 0.005 0.567 0.111 0.287

[13] 0.866 0.919 0.661 0.748 0.530 0.615 0.234 0.395

[14] 0.000 0.760 0.543 0.600 0.001 0.570 0.336 0.421

[15] 0.628 0.864 0.627 0.756 0.336 0.636 0.309 0.485

[16] 0.934 0.971 0.865 0.892 0.583 0.695 0.381 0.520

[17] 0.000 0.959 0.829 0.830 0.001 0.779 0.487 0.551

[18] 0.415 0.979 0.854 0.866 0.079 0.821 0.460 0.550

[19] 0.866 0.922 0.673 0.765 0.539 0.630 0.246 0.429

[20] 0.000 0.726 0.524 0.566 0.001 0.586 0.375 0.450

[21] 0.000 0.916 0.677 0.745 0.001 0.795 0.429 0.553

[22] 0.965 0.990 0.949 0.960 0.638 0.769 0.519 0.639

[23] 0.000 0.980 0.928 0.904 0.000 0.857 0.670 0.677

[24] 0.898 0.947 0.924 0.952 0.572 0.665 0.570 0.700

[25] 0.983 0.997 0.989 0.985 0.682 0.821 0.680 0.711

[26] 0.178 0.997 0.986 0.969 0.007 0.928 0.783 0.742

[27] 0.918 0.999 0.990 0.978 0.402 0.934 0.765 0.741

For each censoring scheme, the greatest powers are in bold.
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Table 4: Power of the proposed tests for the alternatives with the NFR function at the significance level 0.10 for

several schemes.

L(0,0.5) L(0,1)

S.N D∗Tmn
CRTmn CTmn T TA D∗Tmn

CRTmn CTmn T TA

[1] 0.254 0.990 0.000 0.995 0.999 0.134 0.280 0.123 0.304 0.364

[2] 0.956 0.993 0.938 0.987 0.987 0.348 0.468 0.287 0.428 0.440

[3] 0.993 0.998 0.453 0.995 0.996 0.410 0.469 0.082 0.437 0.459

[4] 0.008 0.996 0.001 0.996 1.000 0.194 0.269 0.189 0.285 0.353

[5] 0.975 1.000 0.955 0.997 0.999 0.285 0.497 0.185 0.415 0.484

[6] 0.022 0.994 0.000 0.991 0.998 0.164 0.316 0.157 0.283 0.310

[7] 0.001 0.998 0.001 0.997 0.999 0.241 0.250 0.240 0.260 0.351

[8] 0.967 1.000 0.866 1.000 1.000 0.175 0.451 0.084 0.399 0.486

[9] 0.001 0.997 0.001 0.998 1.000 0.236 0.262 0.232 0.269 0.336

[10] 0.615 0.996 0.037 1.000 1.000 0.137 0.283 0.123 0.483 0.581

[11] 0.996 1.000 0.995 0.999 0.999 0.561 0.701 0.492 0.614 0.652

[12] 0.999 1.000 0.295 1.000 1.000 0.513 0.691 0.021 0.635 0.653

[13] 0.016 0.999 0.052 1.000 1.000 0.255 0.225 0.256 0.440 0.588

[14] 1.000 1.000 1.000 1.000 1.000 0.478 0.784 0.379 0.667 0.758

[15] 0.937 1.000 0.000 1.000 1.000 0.201 0.500 0.093 0.520 0.618

[16] 0.001 0.999 0.056 1.000 1.000 0.340 0.181 0.343 0.414 0.588

[17] 1.000 1.000 1.000 1.000 1.000 0.250 0.708 0.146 0.648 0.758

[18] 0.999 1.000 0.985 1.000 1.000 0.170 0.569 0.107 0.619 0.743

[19] 0.251 0.999 0.364 1.000 1.000 0.227 0.213 0.230 0.579 0.736

[20] 1.000 1.000 1.000 1.000 1.000 0.695 0.897 0.620 0.801 0.858

[21] 1.000 1.000 0.698 1.000 1.000 0.509 0.799 0.028 0.779 0.793

[22] 0.002 0.999 0.408 1.000 1.000 0.390 0.137 0.403 0.540 0.764

[23] 1.000 1.000 1.000 1.000 1.000 0.411 0.863 0.323 0.837 0.894

[24] 0.004 0.999 0.002 1.000 1.000 0.243 0.245 0.245 0.496 0.751

[25] 0.001 0.999 0.474 1.000 1.000 0.449 0.113 0.464 0.572 0.773

[26] 1.000 1.000 1.000 1.000 1.000 0.178 0.672 0.153 0.782 0.880

[27] 1.000 1.000 1.000 1.000 1.000 0.106 0.462 0.190 0.762 0.878

Table 5: Progressively censored sample generated from the times to breakdown data on insulating fluids tested at 34

kilovolts, given by Viveros and Balakrishnan (1994).

i 1 2 3 4 5 6 7 8

xi:8:19 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35

Ri 0 0 3 0 3 0 0 5
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Table 6: Test statistics and critical values of the tests.

D∗Tmn
CRTmn CTmn T TA

w = 1 w = 2 w = 4

Test statistic 0.8185 0.0225 -0.0100 -0.0906 -0.0135 -0.0598 -0.1227

Critical value 1.1615 0.0706 -0.0099 0.0662 0.2095 0.0975 0.0579
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Abstract: The spacings of ordered random variables appear in many branches
of statistical theory and applications such as reliability and life testing. In this
article, we study the likelihood ratio ordering of p-spacings of generalized or-
der statistics and establish some more flexible and applicable results. We also
settle certain open problems in this regard by providing some useful lemmas.
Finally, two applications of these results are indicated in sequential k-out-of-n
systems and progressive Type-II censored order statistics.

Keywords: Logconcavity and logconvexity, Progressive Type-II censored or-
der statistics, Sequential order statistics, Stochastic orderings, Total positivity.

1 Introduction

The concept of generalized order statistics (GOS) introduced by [10, 11] as
a general framework for models of ordered random variables. Let X be a
nonnegative random variable with cumulative distribution function (cdf) F ,
survival function (sf) F = 1−F , and probability density function (pdf) f . Let
h = f/F̄ be the hazard rate function of X . Random variables X(r,n,m̃n,k),
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r = 1,2, ...,n, are called GOS if their joint density function is given by

f(x1, ...,xn) = k
(n−1

∏
j=1

γ( j,n,m̃n,k)

)(n−1

∏
i=1

[F̄(xi)]
mi f (xi)

)
[F̄(xn)]

k−1 f (xn),

for all F−1(0) < x1 ≤ x2 ≤ ... ≤ xn < F−1(1−), where n ∈ N, k > 0 and
m1, ...,mn−1 ∈ R are such that γ(r,n,m̃n,k) = k+ n− r+∑

n−1
j=r m j > 0 for all r ∈

{1, ...,n−1}, and m̃n = (m1, ...,mn−1), if n≥ 2 (m̃n ∈ R is arbitrary, if n = 1).
For example, if m1 = ...= mn−1 = 0 and k = 1, or m1 = ...= mn−1 =−1 and
k ∈ N, then the GOS would convert to the order statistics and k-record values,
respectively (see Table 1 [10] for complete information of submodels). We
denote the general spacings of GOS by D(r,s,n,m̃n,k) = X(s,n,m̃n,k)−X(r−1,n,m̃n,k),
with X(0,n,m̃n,k) ≡ 0. For s = r and s = r + p− 1, it is simple spacings and
p-spacings (denoted by D(p)

(r,n,m̃n,k)
), respectively.

One of the most important stochastic ordering is the likelihood ratio order-
ing that implies some other stochastic orderings. We say that X is smaller than
Y (with pdf g) in likelihood ratio order (denoted by X ≤lr Y ) if g(x)/ f (x) is
increasing in x. Also, X or F is said to be ILR (increasing likelihood ratio)
[DLR (decreasing likelihood ratio)] if its pdf exists and is logconcave [logcon-
vex] (cf. [14]).

Now, consider the following problems:

(P1) X ∈ DLR⇒ D(p)
(r,n,m̃n,k)

≤lr D(p)
(r+1,n,m̃n,k)

;

(P2) X ∈ DLR⇒ D(p)
(r,n+1,m̃n,k)

≤lr D(p)
(r,n,m̃n,k)

;

(P3) X ∈ DLR⇒ D(p)
(r,n,m̃n,k)

≤lr D(p)
(r+1,n+1,m̃n,k)

;

(P4) X ∈ DLR⇒ D(p)
(r,n,m̃n,k)

≤lr D(p)
(r′,n′,m̃n,k)

, r ≤ r′, n′− r′ ≤ n− r;

(P5) X ∈ ILR⇒ D(p)
(r,n,m̃n,k)

≥lr D(p)
(r+1,n+1,m̃n,k)

;

(P6) X ∈ ILR⇒ D(p)
(r,n,m̃n,k)

≤lr D(p+1)
(r−1,n,m̃n,k)

;

(P7) X ∈ ILR⇒ D(p)
(r,n,m̃n,k)

≤lr D(p′)
(r′,n,m̃n,k)

, p+1 ≤ p′, r′ ≤ r−1, p+ r =

p′+ r′.
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For order statistics, [13] obtained (P1) and (P2). [9] proved (P3) (and (P4)
as a corollary of (P1), (P2) and (P3)), (P5) and (P6). For GOS, [8] obtained
(P1)-(P6) under the strong condition m1 = ... = mn−1 in which the marginal
and joint pdf of GOS have the closed form representation in this case. Fi-
nally, [16] proved (P1)-(P4) without the condition m1 = ...= mn−1 using some
conditionally results.

In this article, we first give some preliminaries in Section 2. In Section 3, we
obtain our main results for very flexible case of different parameters m̃n and
m̃′n′. This enables us to compare the submodels of GOS among themselves,
and, more generally, among different submodels (we refer the reader to the
recent monograph of [4] for dispersive and star orderings of GOS with dif-
ferent parameters m̃n and m̃′n′). We extend (P1)-(P4) in the unifying Theorem
1 for different mi and m′i. We note that (P5) and (P6) remained as the open
problems for unequal mi. We extend (P5) for different mi and m′i among simple
spacings, i.e., for p = 1 in Theorem 2. Also, we extend it for m′i = mi, but un-
equal mi, and for arbitrary p-spacings in Theorem 3.3. We extend (P7) (which
is more general than (P6)) for different parameters mi and m′i in Theorem 4.4.
Finally, in Section 4, we explain how these results can be applied in sequential
k-out-of-n systems and progressive Type-II censored order statistics.

Throughout the paper, the word increasing (decreasing) is used for non-
decreasing (non-increasing) and all expectations are implicitly assumed to ex-
ist whenever they are written. Also, we omit some proofs for the sake of
brevity.

2 Preliminaries

For the marginal pdf of GOS, [7] obtained the expression

fX(r,n,m̃n,k)
(x) = cr−1[F̄(x)]γ(r,n,m̃n,k)−1gr(F(x)) f (x), x ∈ R, (1)

where cr−1 = ∏
r
i=1 γ(i,n,m̃n,k), r = 1, ...,n, γ(n,n,m̃n,k) = k, and gr is a particular

Meijer’s G-function. [15] rediscovered this representation by presenting an
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integral representation for gr. For the joint pdf of X(r,n,m̃n,k) and X(s,n,m̃n,k),
1≤ r < s≤ n, [15] established the expression

fX(r,n,m̃n,k),X(s,n,m̃n,k)
(x,y) = cs−1[F̄(x)]γ(r,n,m̃n,k)−γ(s,n,m̃n,k)−1gr(F(x))

×[F̄(y)]γ(s,n,m̃n,k)−1
ψs−r−1

(F̄(y)
F̄(x)

)
f (x) f (y), x < y, (2)

where ψ0(t) = 1, ψ1(t) = δmr+1(1− t),

ψα(t) =
∫ 1

t

∫ 1

uα−1

...
∫ 1

u2

δmr+1(1−u1)
α−1

∏
i=1

ui
mr+i+1du1...duα−2duα−1, 0≤ t ≤ 1,

for α = 2,3, ..., and δm(t) =

 1
m+1(1− (1− t)m+1), m 6=−1

−ln(1− t), m =−1
, t ∈ (0,1).

[1] and [2, 3] studied logconcavity properties of the function gr and GOS.
According to Lemmas 2.1 and 3.1 of [1], we have

g1(t) = 1, gr(t) =
∫ t

0
gr−1(u)[1−u]mr−1du, 0≤ t ≤ 1, r = 2, ...,n, (3)

ψ0(t) = 1, ψα(t) =
∫ 1

t
ψα−1(u)umr+α du, 0≤ t ≤ 1, α = 1,2, ... . (4)

Now, substituting r with r−1 in (2) and some calculations, for 2≤ r ≤ s≤ n,
we obtain

fD(r,s,n,m̃n,k)
(x) = cs−1

∫ +∞

0
[F̄(x+ y)]γ(s,n,m̃n,k)−1

ψs−r

(F̄(x+ y)
F̄(y)

)
f (x+ y)

×[F̄(y)]γ(r−1,n,m̃n,k)−γ(s,n,m̃n,k)−1gr−1(F(y)) f (y)dy, x≥ 0, (5)

where, according to (4) for r−1,

ψs−r

(F̄(x+ y)
F̄(y)

)
=
∫ 1

( F̄(x+y)
F̄(y) )

ψs−r−1(u)ums−1du, r+1≤ s≤ n, (6)

with ψ0(t) = 1 and, for r = 1, we have fD(1,s,n,m̃n,k)
(x) = fX(s,n,m̃n,k)

(x).

Definition 2.1 ([12]). Let X and Y be subsets of R. A function Λ : X ×Y →
R is said to be totally positive of order 2 (T P2) (reverse regular of order 2
(RR2)) if Λ(x1,y1)Λ(x2,y2)−Λ(x1,y2)Λ(x2,y1)≥ (≤)0, for x1 ≤ x2 in X and
y1 ≤ y2 in Y .
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Lemma 2.2 ([13]). Assume that Θ is a subset of the real line R, and let

U be a nonnegative random variable having a cdf belonging to the family

P = {Ξ(·|θ),θ ∈ Θ} which satisfies that, for θ1,θ2 ∈ Θ, Ξ(·|θ1) ≤st (≥st

)Ξ(·|θ2), whenever θ1 ≤ θ2. Let φ(u,θ) be a real valued function defined on

R×Θ, which is measurable in u for each θ such that Eθ [φ(U,θ)] exists. Then,

Eθ [φ(U,θ)] is (i) increasing in θ , if φ(u,θ) is increasing in θ and increasing

(decreasing) in u; (ii) decreasing in θ , if φ(u,θ) is decreasing in θ and de-

creasing (increasing) in u.

The following lemmas play an important role for obtaining our main results.

Lemma 2.3. For s ≥ r+ 1, the function ψs−r

(
F̄(x+y)

F̄(y)

)
in (3) is T P2 (RR2) in

(x,y) provided that any one of the conditions is satisfied: (a) f is logconvex

(logconcave) and mi ≥ 0, (b) h is logconvex (logconcave) and −1≤ mi < 0.

Proof. From (3), for any y1 ≤ y2, we have

ψs−r

(
F̄(x+y2)

F̄(y2)

)
ψs−r

(
F̄(x+y1)

F̄(y1)

) =

∫
RI{0≤u≤x}ψs−r−1

(
F̄(u+y2)

F̄(y2)

)
[ F̄(u+y2)

F̄(y2)
]ms−1 f (u+y2)

F̄(y2)
du∫

RI{0≤u≤x}ψs−r−1

(
F̄(u+y1)

F̄(y1)

)
[ F̄(u+y1)

F̄(y1)
]ms−1 f (u+y1)

F̄(y1)
du

= Ex[φ(U,x)],

where IA is the indicator function,

φ(u,x) ∝

ψs−r−1

(
F̄(u+y2)

F̄(y2)

)
ψs−r−1

(
F̄(u+y1)

F̄(y1)

) [F̄(u+ y2)

F̄(u+ y1)

]ms−1 f (u+ y2)

f (u+ y1)
(7)

=
ψs−r−1

(
F̄(u+y2)

F̄(y2)

)
ψs−r−1

(
F̄(u+y1)

F̄(y1)

) [F̄(u+ y2)

F̄(u+ y1)

]ms−1+1 h(u+ y2)

h(u+ y1)
, (8)

and U is a nonnegative random variable having a cdf belonging to the family
P = {Ξ(·|x,y1),x,y1 ∈ R+} with corresponding pdf

ξ (u|x,y1) = c(x,y1)I{0≤u≤x}ψs−r−1

(F̄(u+ y1)

F̄(y1)

)[F̄(u+ y1)

F̄(y1)

]ms−1 f (u+ y1)

F̄(y1)
, (9)

in which c(x,y1) is the normalizing constant. First, note that, for x1 ≤ x2,
ξ (u|x2,y1)
ξ (u|x1,y1)

∝
I{0≤u≤x2}
I{0≤u≤x1}

, is increasing in u because I{0≤u≤x} is T P2 in (x,u). Let
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s− r = 1. According to (7), one can see that φ(u,x) is increasing (decreasing)
in u when f is logconvex (logconcave) and mi ≥ 0. According to (8), φ(u,x)

is increasing (decreasing) in u when f and h are logconvex (logconcave) and
−1≤mi < 0 (note that if h is logconcave then f is so). Also, φ(u,x) is constant
with respect to x. Thus, the desired result follows by induction and Lemma
2.2.

The proof of all the following new lemmas are similar to that of Lemma 2.3
and thus omitted.

Lemma 2.4. Let s− r ≥ 1 and Y be a nonnegative random variable having a

cdf belonging to the family P = {G(·|x),x ∈ R+} with corresponding pdf

ζ (y|x) = c(x)[F̄(x+ y)]γ(s,n,m̃n,k)−1
ψs−r

(F̄(x+ y)
F̄(y)

)
f (x+ y)

×[F̄(y)]γ(r−1,n,m̃n,k)−γ(s,n,m̃n,k)−1gr−1(F(y)) f (y), (10)

where c(x) is the normalizing constant. Then, G(·|x1)≤st (≥st)G(·|x2), whenever

0≤ x1 ≤ x2 , provided that any one of the following conditions is satisfied:

i. f is logconvex (logconcave), γ(s,n,m̃n,k) ≥ 1, and mi ≥ 0;

ii. h is logconvex (logconcave) and −1≤ mi < 0.

Lemma 2.5. For s≥ 2, the function ψs−1(
F̄(x+y)

F̄(y) )/gs(F(x)) is increasing (de-

creasing) in x provided that any one of the following conditions is satisfied:

i. f is logconvex (logconcave) and mi ≥ 0,

ii. h is logconvex (logconcave) and −1≤ mi < 0;

We also need some results for different parameters mi and m′i. From now on,
we consider m̃′n′ =(m′1, ...,m

′
n′−1) with γ(r′,n′,m̃′

n′ ,k
′)= k′+n′−r′+∑

n′−1
j=r′ m

′
j > 0.

Lemma 2.6. Let r ≤ r′. If m′r′−i ≤ mr−i for 1 ≤ i ≤ r− 1, then ǧr′(t)/gr(t) is

increasing in t where g and ǧ are defined in (2) with parameters mi and m′i,

respectively. If m′r−i ≥mr−i for 1≤ i≤ r−1, then ǧr(t)/gr(t) is decreasing in

t.
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Lemma 2.7. Suppose that ψ and ψ̌ are defined in (3) with parameters mi and

m′i, respectively. Let s′− r′ = s− r and s≤ s′. For s− r ≥ 1, the function

∆(r,r′,s,s′)(x,y) =
ψ̌s′−r′(

F̄(x+y)
F̄(y) )

ψs−r(
F̄(x+y)

F̄(y) )
· [F̄(y)]m

′
s′−1−ms−1 (11)

i. is increasing (decreasing) in y provided that m′j ≤mi (m′j ≥mi) for any i≤ j,

and any one of the following conditions is satisfied:

(a) f is logconvex and mi ≥ 0, (b) h is logconvex and −1≤ mi < 0;

ii. is increasing (decreasing) in x provided that m′j ≤ mi (m′j ≥ mi) for any

i≤ j.

3 Likelihood ratio ordering

In this section, we study the preservation of likelihood ratio ordering among
spacings of GOS. It is worth mentioning that the direct studying of likelihood
ratio ordering of spacings of GOS by means of its marginal pdf is rather com-
plicated (since the pdf has not a closed form). Thus, some authors imposed
some restrictions on the model. However, we obtain our main results directly.
This enable us to have a more exible choice of parameters to compare the
submodels of GOS.

Theorem 3.1. Let X(r,n,m̃n,k), r = 1, ...,n, X(r′,n′,m̃′
n′ ,k
′), r′ = 1, ...,n′, be GOS

based on cdf F. If r ≤ r′, s≤ s′ and s′− r′ = s− r, then,

D(r,s,n,m̃n,k) ≤lr D(r′,s′,n′,m̃′
n′ ,k
′)

provided that m′j ≤ mi for any i ≤ j, γ(s′,n′,m̃′
n′ ,k
′) ≤ γ(s,n,m̃n,k), and any one of

the following conditions is satisfied:

i. f is logconvex, mi ≥ 0, and

(a) γ(s,n,m̃n,k) ≥ 1, for r ≥ 2, (b) γ(s′,n′,m̃′
n′ ,k
′) ≥ 1, for r = 1;

ii. h is logconvex and −1≤ mi < 0.
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Proof. We give the proof in two cases. Case 1: r ≥ 2. From (5), we have

fD(r′,s′,n′,m̃′
n′ ,k
′)
(x)

fD(r,s,n,m̃n,k)
(x)

= Ex[φ(Y,x)],

where

φ(y,x) ∝ [F̄(x+ y)]
γ(s′,n′,m̃′

n′ ,k
′)−γ(s,n,m̃n,k)

ψ̌s′−r′
(

F̄(x+y)
F̄(y)

)
ψs−r

(
F̄(x+y)

F̄(y)

) ǧr′−1(F(y))
gr−1(F(y))

×[F̄(y)]
(γ(r′−1,n′,m̃′

n′ ,k
′)−γ(s′,n′,m̃′

n′ ,k
′))−(γ(r−1,n,m̃n,k)−γ(s,n,m̃n,k)),

= [F̄(x+ y)]
γ(s′,n′,m̃′

n′ ,k
′)−γ(s,n,m̃n,k) ·∆(r,r′,s,s′)(x,y) ·

ǧr′−1(F(y))
gr−1(F(y))

×[F̄(y)]
(γ(r′−1,n′,m̃′

n′ ,k
′)−γ(s′,n′,m̃′

n′ ,k
′))−(γ(r−1,n,m̃n,k)−γ(s,n,m̃n,k))−(m

′
s′−1−ms−1)

= [F̄(x+ y)]
γ(s′,n′,m̃′

n′ ,k
′)−γ(s,n,m̃n,k) ·∆(r,r′,s,s′)(x,y) ·

ǧr′−1(F(y))
gr−1(F(y))

×[F̄(y)]
(∑s′−2

j=r′−1
m′j)−(∑

s−2
j=r−1 m j), (12)

∆(r,r′,s,s′)(x,y) defined in (11), and Y is a nonnegative random variable having
a cdf belonging to the family P = {G(·|x),x ∈ R+} with the pdf defined in
(10). It is seen that the following hold in (12): The first term is increasing in
x and y because of γ(s′,n′,m̃′

n′ ,k
′) ≤ γ(s,n,m̃n,k); The second term is increasing in x

and y because of the conditions (i, ii) in the theorem, m′j ≤mi for any i≤ j, and
Lemma 2.7; The third term is increasing in y because of r≤ r′, m′j ≤mi for any
i ≤ j, and Lemma 2.6; The fourth term is increasing in y because of m′j ≤ mi

for any i ≤ j. Further, according to the conditions (ia, ii) in the theorem and
Lemma 2.4, we have G(·|x1)≤st G(·|x2) for x1 ≤ x2. Now, part (i) of Lemma
2.2 implies that Ex[φ(Y,x)] is increasing in x. Case 2: r = 1. From (1) and (5),
we have

fD(r′,s′,n′,m̃′
n′ ,k
′)
(x)

fD(1,s,n,m̃n,k)
(x)

=
∫ +∞

0

[F̄(x+ y)]
γ(s′,n′,m̃′

n′ ,k
′)−1

[F̄(x)]γ(s,n,m̃n,k)−1

ψ̌s′−r′
(

F̄(x+y)
F̄(y)

)
gs(F(x))

f (x+ y)
f (x)

·ν(y)dy

=
∫ +∞

0
[
F̄(x+ y)

F̄(x)
]
γ(s′,n′,m̃′

n′ ,k
′)−1

[F̄(x)]
γ(s′,n′,m̃′

n′ ,k
′)−γ(s,n,m̃n,k)
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×
ψ̌s′−r′

(
F̄(x+y)

F̄(y)

)
gs(F(x))

f (x+ y)
f (x)

·ν(y)dy (13)

=
∫ +∞

0
[
F̄(x+ y)

F̄(x)
]
γ(s′,n′,m̃′

n′ ,k
′)
[F̄(x)]

γ(s′,n′,m̃′
n′ ,k
′)−γ(s,n,m̃n,k)

×
ψ̌s′−r′

(
F̄(x+y)

F̄(y)

)
gs(F(x))

h(x+ y)
h(x)

·ν(y)dy, (14)

where ν(y) does not depend on x. Now, according to the conditions of theo-
rem, to prove that (13) and (14) is increasing in x, it is sufficient to show that
ψ̌s′−r′(

F̄(x+y)
F̄(y) )/gs(F(x)) is increasing in x. To do this, we consider it as

ψ̌s′−r′
(

F̄(x+y)
F̄(y)

)
gs(F(x))

=
ψ̌s′−r′

(
F̄(x+y)

F̄(y)

)
ψs−r

(
F̄(x+y)

F̄(y)

) ψs−r

(
F̄(x+y)

F̄(y)

)
gs(F(x))

. (15)

So, the first and second term is increasing in x by Lemma 2.7(ii) and Lemma
2.5 with r = 1, respectively. Therefore, the proof is completed.

Using Lemmas 2.2, 2.4, 2.6 and some calculations, we give the following.

Theorem 3.2. Let X(r,n,m̃n,k), r = 1, ...,n, X(r′,n′,m̃′
n′ ,k
′), r′ = 1, ...,n′, be GOS

based on cdf F. If r ≤ r′, then, D(r,r,n,m̃n,k) ≥lr D(r′,r′,n′,m̃′
n′ ,k
′), provided that, for

r ≥ 2, m′j ≤ mi for any i ≤ j, γ(r′,n′,m̃′
n′ ,k
′) = γ(r,n,m̃n,k), for r = 1, γ(r′,n′,m̃′

n′ ,k
′) ≥

γ(1,n,m̃n,k), and any one of the following conditions is satisfied:

i. f is logconcave,

(a) γ(r,n,m̃n,k) ≥ 1 and mi ≥ 0, for r ≥ 2, (b) γ(r′,n′,m̃′
n′ ,k
′) ≥ 1, for r = 1;

ii. h is logconcave, and, for r ≥ 2, −1≤ mi < 0.

Using Lemmas 2.2, 2.4, 2.5, 2.6 and some calculations, we give the follow-
ing.

Theorem 3.3. Let X(r,n,m̃n,k), r = 1, ...,n, X(r′,n′,m̃n′ ,k
′), r′ = 1, ...,n′, be GOS

based on cdf F. If r+1≤ r′ and s′−r′= s−r, then, D(r,s,n,m̃n,k)≥lr D(r′,s′,n′,m̃n′ ,k
′),

provided that, for r ≥ 2, m j ≤ mi for any i ≤ j, γ(s′,n′,m̃n′ ,k
′) = γ(s,n,m̃n,k), for
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r = 1, γ(s′,n′,m̃n′ ,k
′) ≥ γ(s,n,m̃n,k), and any one of the following conditions is sat-

isfied:

i. f is logconcave, mi ≥ 0, and

(a) γ(s,n,m̃n,k) ≥ 1, for r ≥ 2, (b) γ(s′,n′,m̃n′ ,k
′) ≥ 1, for r = 1;

ii. h is logconcave and −1≤ mi < 0.

Using Lemmas 2.2, 2.4, 2.5, 2.6, 2.7 and some calculations, we give the
following.

Theorem 3.4. Let X(r,n,m̃n,k), r = 1, ...,n, X(r′,n′,m̃n′ ,k
′), r′ = 1, ...,n′, be GOS

based on cdf F. If r′≤ r−1 and s′−r′= s−r, then, D(r,s,n,m̃n,k)≤lr D(r′,s′,n′,m̃n′ ,k
′),

provided that, for r ≥ 3, m j ≥ mi for any i ≤ j, γ(s′,n′,m̃n′ ,k
′) = γ(s,n,m̃n,k), for

r = 2, γ(s′,n′,m̃n′ ,k
′) ≤ γ(s,n,m̃n,k), and any one of the following conditions is sat-

isfied:

i. f is logconcave, γ(s,n,m̃n,k) ≥ 1 and mi ≥ 0;

ii. h is logconcave and −1≤ mi < 0.

Remark 3.5. (1) [16] proved the statement of Theorem 1 (in their separate
Theorems 3.1, 3.2, 3.3 and Corollary 3.4) under the conditions as follows:

k = k′, n = n′, mi = m′i, mi is decreasing in i, and r′− r ≥ n′−n. (16)

By choosing s = r+ p−1 and s′ = r′+ p−1, one can see that (16) implies the
conditions in Theorem 1;
(2) [8] proved the statement of Theorems 2 and 3.3 under very stronger condi-
tions m1 = ...= mn−1 and mi = m′i. Additional of these restrictions, by choos-
ing s = r+ p−1 and s′ = r′+(p+1)−1 with r′ = r−1 in our Theorem 4.4,
one can see that Theorem 4.4 of [8] is a special case of Theorem 4.4.

4 Applications

Sequential (n− k + 1)-out-of-n system. In this system, successive failure
times of components are observed which are called sequential order statis-
tics (SOS). The system collapses after the k-th failure so that the k-th SOS
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describes the system lifetime. After the failure of the i-th component, the dis-
tribution of the lifetimes of the remaining components in the system is adjusted
by a parameter αi (cf. [6]). This reflects both a damage caused by the previ-
ous failures and a higher load imposed on the remaining components leading
possibly to shorter residual life. SOS under proportional hazard rates are in-
cluded in GOS. Indeed, the specific choice of distribution functions Fi(x) =

1− (1−F(x))αi, with a cdf F and positive real numbers α1, ...,αn leads to the
model of GOS with parameters k = αn and mi = (n− i+1)αi−(n− i)αi+1−1
(and hence γi = (n− i+ 1)αi). The flexible results of the paper enable us to
compare spacings of two sequential systems with different parameters αi and
α ′i in likelihood ratio orders when the components have the same life time dis-
tribution.
Progressive Type-II censored order statistics. A progressively censored life
test involves N items with i.i.d. lifetimes placed simultaneously on test. At
the time of the i-th failure (1 ≤ i ≤ n), Ri surviving units are randomly with-
drawn from the test. Progressively Type-II censored order statistics (PCOS)
arising from such a reliability experiment correspond to GOS with parameters
mi = Ri ∈ N0, i = 1, ...,n− 1, and k = Rn + 1. The vector R̃ = (R1, ...,Rn) is
called censoring plan (cf. [5]). Our results can be applied to compare spac-
ings of PCOS in two tests with different censoring plans R̃ and R̃′ in likelihood
ratio orders when n failures are observed and the components have the same
lifetime distributions.

Finally, we note that the results of this paper can be applied for other sub-
models of GOS such as record values, Pfeifers record values and order statis-
tics under multivariate imperfect repair.
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Abstract: In this talk we consider lifetime of coherent systems as a gener-
alized finite mixture model, which formed by dependent and identically dis-
tributed (d.i.d) components. We then establish some general results for the
comparisons of two such generalized finite mixture models in two different
cases: (i) when two mixture models are formed from two random vectors X

and Y and having same weights, (ii) when two mixture models are formed
with the same random vectors and having different weights. Because the life-
times of k-out-of-n systems and coherent systems are special cases of the con-
sidered mixture model, we established results and then used to compare the
lifetimes k-out-of-n systems and of coherent systems with respect to various
stochastic orderings.

Keywords: Coherent system, Copula function, Generalized mixture model,
k-out-of-n system, Stochastic orders.

1 Introduction

Let X = (X1, . . . ,Xn) be a vector of non-negative d.i.d. random variables with
an absolutely continuous distribution F , survival function F = 1−F , and den-
sity function f . The joint distribution function of X is given by

FX(x) = P(X1 ≤ x1, . . . ,Xn ≤ xn) = C(F(x1), . . . ,F(xn)), (1)
1Amini-Seresht, E.: e.amini64@yahoo.com
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where x = (x1, . . . ,xn) and C is the multivariate distribution copula on [0,1]n

with uniformly distributed marginals on [0,1]. The joint survival (or reliability)
function of X has the form

FX(x) = P(X1 > x1, . . . ,Xn > xn) = Ĉ(F(x1), . . . ,F(xn)),

where F is the survival function; it is also referred to as a reliability copula (see
Nelsen (2006)). Now, let Ki(F(x))= Ĉ(F(x)1i,1n−i) denote the survival func-
tion of the series system X1:i =min(X1, . . . ,Xi), where the entries of both 1i and
1n−i are all ones, with K1(F(x)) = F(x) and Kn(F(x)) = Ĉ(F(x), . . . ,F(x)).

We now define the survival function of a generalized finite mixture model
(wherein the mixing proportions may be negative) from these i-dimensional
marginals of Ĉ as follows:

HX,a(F(x)) =
n

∑
i=1

aiKi(F(x)), (2)

where a= (a1, . . . ,an) are some real numbers (weights) such that ∑
n
i=1 ai = 1.

Note that if all the weights are positive, then the mixture model in (2) becomes
a pure mixture model. If some of the weights are negative, then we have the
mixture in (2) to be a generalized mixture model. Suppose u = F(x) for all
u ∈ [0,1]; then, (2) can be rewritten as

Ha(u) =
n

∑
i=1

aiKi(u),

where Ha(u) is a proper distribution function from [0,1] to [0,1] with Ha(0) =
0 and Ha(1) = 1. Moreover, the distribution function corresponding to the
generalized mixture model in (2) is given by

HX,a(F(x)) =
n

∑
i=1

aiKi(F(x)),

where HX,a(F(x)) = 1−HX,a(F(x)) and Ki(F(x)) = 1−Ki(F(x)).
We specificity establish some general results for the comparison of two gen-

eralized mixture models in (2) in the sense of hazard rate and reversed hazard
rate orders.
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We first briefly review some notions of stochastic orderings and ageing
properties that are used in the subsequent sections of this paper. Let R =

(−∞,+∞) and R+ = [0,+∞). Throughout this paper, we use increasing to
mean non-decreasing and decreasing to mean non-increasing.

Definition 1.1. Let X and Y be two non-negative random variables with density
functions f and g, distribution functions F and G, survival functions F = 1−F

and G = 1−G, hazard rate functions rX = f
F and rY = g

G
, and reversed hazard

rate functions r̃X = f
F and r̃Y = g

G , respectively. Then:

• X is said to be smaller than Y in the likelihood ratio order (denoted by
X ≤lr Y ) if g(x)

f (x) is increasing in x;

• X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y )
if G(x)

F(x) is increasing in x, or, equivalently, rX(x)≥ rY (x) for all x;

• X is said to be smaller than Y in the reversed hazard rate order (denoted by
X ≤rh Y ) if G(x)

F(x) is increasing in x, or, equivalently, r̃X(x)≤ r̃Y (x) for all x;

• X is said to be smaller than Y in the usual stochastic order (denoted by
X ≤st Y ) if F(x) ≤ G(x) for all x ∈ R+, or equivalently, E[φ(X)] ≤ [≥
]E[φ(Y )] for any increasing [decreasing] function φ : R→R for which the
involved expectations exist.

It is well-known that

X ≤lr Y =⇒ X ≤hr[rh] Y =⇒ X ≤st Y, (3)

but neither reversed hazard rate order nor hazard rate order implies the other.
For more detailed discussions on the above stochastic orderings, one may refer
to the books by [11] and [9].

Several authors have studied stochastic comparisons of mixture models; see
[1], [5], [2], [4], [3], [6], [7] and [8]. Recently, Hernandez (2007) and [10]
obtained.

In this work, we first consider two statistical models HX,a and HY ,a hav-
ing different components and same weights and establish some ordering re-
sults between them in the sense of hazard rate and reversed hazard rate orders.
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Next, we consider HX,a and HX,b having the same components with different
weights and establish results with respect to different stochastic orders.

2 Main results

In this section, we obtain some general results for the comparison of general
mixture models in (2) in the following two cases: two mixture models formed
from two sets of random vectors, X and Y , with the same weights, and two
mixture models formed from one random vector of components, X, with dif-
ferent weights.

2.1 Stochastic comparisons of mixture models with two different random vectors

Theorem 2.1. Let HX,a and HY ,a be two generalized finite mixture models

with d.i.d. components X and Y , respectively, and having the same copula

function. If

(i) uH ′a(u)
Ha(u)

is decreasing in u for all u ∈ (0,1), and

(ii) X1 ≤hr Y1,

then HX,a ≤hr HY ,a.

Theorem 2.2. Let HX,a and HY ,a be two generalized finite mixture models

with d.i.d. components X and Y , respectively, and having the same copula

function. If

(i) (1−u)H ′a(u)
1−Ha(u)

is increasing in u for all u ∈ (0,1), and

(ii) X1 ≤rh Y1,

then HX,a ≤rh HY ,a.

2.2 Stochastic comparisons of mixture models with the same random vector

We now consider two mixture models, HX,a and HX,b, having the same d.i.d.
components but with different vectors of weights, a and b, respectively. We
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then establish some sufficient conditions for the comparison of the two mix-
tures models with respect to hazard rate and reversed hazard rate orderings.

Theorem 2.3. Let HX,a and HX,b be two generalized finite mixture models

with d.i.d. components X and vectors of weights a and b, respectively. If

(i)
uK′j(u)
K j(u)

is increasing in j for all 1≤ j ≤ n, and

(ii) aib j ≤ a jbi for all 1≤ i≤ j ≤ n.

then HX,a ≤hr HX,b,

Theorem 2.4. Let HX,a and HX,b be two generalized finite mixture models

with d.i.d. components X and vectors of weights a and b, respectively. If

(i)
(1−u)K′j(u)

1−K j(u)
is increasing in j for all 1≤ j ≤ n, and

(ii) aib j ≤ a jbi for all 1≤ i≤ j ≤ n.

then HX,a ≤rh HX,b,
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Abstract: The main purpose of this work is to model a continuously moni-
tored deteriorating system by using a bivariate Birth/Birth-Death process. The
system consists of M identical, independent units, each subject to gradual de-
terioration. The production rate of each unit varies in different working states
and the demand rate of the system is assumed to be constant. The cost of
sending maintenance crew to perform maintenance is high, so simultaneous re-
placement of several units can be cost-effective. Maintenance is initiated when
the process makes a transition into a state with r failed units. The maintenance
policy prescribes corrective replacement of failed units as well as preventive
maintenance of unhealthy units. The optimal maintenance policy is derived
such that the long-run expected average cost per unit time is minimized, ac-
cording to the renewal theory. Finally, a practical example of a multi-unit
system is provided.

Keywords: Condition-based maintenance, Continuously monitoring, Multi-
unit systems.

1 Introduction
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Production systems are getting much more complicated today, and aging is
becoming a significant issue. Traditional approaches of system reliability and
maintenance which have primarily been performed on a corrective basis, inde-
pendently of the deterioration progression, are not adequate to address these
developments. Corrective maintenance will only be carried out after a fail-
ure occurs, which may result in substantial production losses. The idea of
maintenance has grown to the point where it is now used to prevent fail-
ure and maintain the system in proper operation condition ([3]). Generally,
preventive maintenance policies are classified into two categories: age-based
and condition-based maintenance (CBM). The literature on age-based mainte-
nance policies is widespread; see for example [4] and [10].

In comparison with the age-based maintenance, CBM is mainly taken into
account as a significant maintenance strategy that collects and analyses real-
time information about the system state and suggests maintenance actions
based on the system’s current condition. The existing CBM models for a single
unit system were reviewed in [2]. Maintenance issues in multi-unit systems are
much more complex than maintenance policies in single-unit systems. Such
systems are more applicable to real-world scenarios, but research in this area
is limited. A CBM model for multi-unit systems subject to stochastic deterio-
rations was studied by [8]. They presented a preventive opportunistic mainte-
nance policy for a two-unit system considering economic dependency between
the units. [5] proposed an optimization model which is defined by a combi-
nation of CBM and age information. Preventive maintenance is performed
on the two units, one of which is the system’s key component and is subject
to condition monitoring, and only the age information for the second unit is
available.

Maintenance activities affect production, so it is critical to integrate mainte-
nance and production. A breakdown of machine operation causes production
to be disrupted, downtime, and missed production costs rise [1]. Several re-
search studies have focused on production system maintenance policies. [7]
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considered the joint optimization of the CBM and inventory decisions for a
multi-component system with a shared pool of spares. A different CBM pol-
icy was developed by [9] for a deteriorating multi-unit system modeled based
on three states. The authors considered a system production level threshold for
initiating preventive maintenance using discrete-time monitoring.

To our knowledge, no papers have been published considering a bivariate
homogeneous Markov process for a multi-unit system maintenance modeling.
In this work, we develop the bivariate Birth/Birth-Death process, introduced
by [6], for modeling the number of units in an unhealthy state and a failure
state. Considering that, we obtain the optimal maintenance level under differ-
ent conditions and study the effect of the lost demand cost rate on the optimal
policy. The remainder of the paper is organized as follows. The details of
the proposed model are summarized in 2. A computational algorithm to ob-
tain maintenance level is developed in 3. Finally, an illustrative example is
presented in 4.

2 Model Formulation

We investigate the model formulation under the following assumptions.

Assumptions

• A system is composed of a large number, M, of identical units which are
operating in parallel and subject to deteriorate.

• Unit’s state can be categorized into one of the three states: a healthy state
(state 0), unhealthy state (state 1), and a failure state (state 2) where all
states are observable for each unit.

• Units can make transition from 0−→ 1 with probability p01, and then from
1−→ 2 with probability p12, or from 0−→ 2 with probability p02, where
p01 + p02 = 1 and p12 = 1.
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• The sojourn time in state i, i = {0,1}, has an exponential distribution with
an unknown parameter λi.

2.1 Birth/Birth-Death Process

Let N0(t), N1(t), and N2(t) be the number of units in state 0, the number
of units in state 1, and the number of units in state 2 at time t, respectively.
Because N0(t) +N1(t) +N2(t) remains constant, we only consider a bivari-
ate homogeneous Markov chain {(N2(t),N1(t)), t ≥ 0} with the state space
S = {(i, j) : 0 ≤ i, j ≤ M,0 ≤ i+ j ≤ M}, to trace N2(t) and N1(t). In other
words, if N2(t)= i and N1(t)= j, the number of units in state 0 will be M− i− j

at time t. For this purpose, we are going to use a subclass of competition
processes with two interacting populations of operating units, (N2(t),N1(t)),
called birth/birth-death process whose first population is increasing (N2(t)).
All possible transitions occur with the following probabilities:

P((N2(t +dt),N1(t +dt)) = (i, j+1)|(N2(t),N1(t)) = (i, j))

= λ
(1)
i j dt +o(dt),

P((N2(t +dt),N1(t +dt)) = (i+1, j)|(N2(t),N1(t)) = (i, j))

= λ
(2)
i j dt +o(dt),

P((N2(t +dt),N1(t +dt)) = (i+1, j−1)|(N2(t),N1(t)) = (i, j))

= γi jdt +o(dt),

P((N2(t +dt),N1(t +dt)) = (i, j)|(N2(t),N1(t)) = (i, j)) =

1− (λ
(1)
i j +λ

(2)
i j + γi j)dt +o(dt),

where λ
(1)
i j = (M− i− j)p01λ0 is the transition rate from state 0 to state 1,

λ
(2)
i j = (M− i− j)p02λ0 is the transition rate from state 0 to state 2, and γi j =

jp12λ1 is the failure rate of units in state 1, given i units in state 2 and j units
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in state 1. The leaving rates of the states can be obtained by:

νi j =


λ
(1)
i j +λ

(2)
i j + γi j = (M− i− j)λ0 + jλ1, 0≤ i≤M−1, 1≤ j ≤M− i−1,

λ
(1)
i j +λ

(2)
i j = (M− i)λ0, 0≤ i≤M−1, j = 0,

γi j = jλ1, 0≤ i≤M−1, j = M− i,

0, i = M, j = 0.

(1)

The state of the continuous-time Markov chain {(N2(t),N1(t))} just after a
state transition is described by the discrete-time Markov chain {(N2,n,N1,n)}
whose one-step transition probabilities p(i, j),(i′, j′) at the end of sojourn times
are derived as follows:

• When 0≤ i≤M−1, 1≤ j ≤M− i−1, the one-step transition probabil-
ities are given by:

p(i, j),(i′, j′) =



λ
(1)
i j

λ
(1)
i j +λ

(2)
i j +γi j

, i′ = i, j′ = j+1

λ
(2)
i j

λ
(1)
i j +λ

(2)
i j +γi j

, i′ = i+1, j′ = j

γi j

λ
(1)
i j +λ

(2)
i j +γi j

, i′ = i+1, j′ = j−1

(2)

• When 0≤ i≤M−1, j = 0, the one-step transition probabilities are given
by:

p(i, j),(i′, j′) =



λ
(1)
i j

λ
(1)
i j +λ

(2)
i j

, i′ = i, j′ = j+1

λ
(2)
i j

λ
(1)
i j +λ

(2)
i j

, i′ = i+1, j′ = j
(3)

• When 0 ≤ i ≤M− 1, j = M− i, a transition is possible to the state with
i′ = i+1, j′ = j−1 with probability 1:

p(i, j),(i′, j′) = 1 (4)
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Uniformization method can obtain the probabilities P(i, j),(i′, j′)(t) via:

P(i, j),(i′, j′)(t) =
∞

∑
n=0

e−νt (νt)n

n!
p̄(n)
(i, j),(i′, j′), (5)

where the probabilities p̄(n)
(i, j),(i′, j′) can be recursively computed from

p̄(n)
(i, j),(i′, j′) = ∑

(k,h)∈S
p̄(n−1)
(i, j),(k,h) p̄(k,h),(i′, j′), n = 1,2, ... (6)

starting with p̄(0)
(i, j),(i, j) = 1 and p̄(0)

(i, j),(i′, j′) = 0 for (i, j) 6= (i′, j′).

3 Maintenance Model

In this section, we investigate the maintenance and replacement policy under
the following assumptions:

• States of the degrading system can be described by the bivariate birth/birth-
death process, {(N2(t),N1(t)), t ≥ 0}, having the initial state (N2(0),N1(0))=
(0,0).

• Monitoring of the system is continuous and perfect, i.e., it reveals instan-
taneously the true state of the system.

• Maintenance is initiated when the process (N2(t),N1(t)) makes a transition
into a state with r failed units while units in states 0 and 1 are working
during the lead time interval [0,u].

• Maintenance policy suggests corrective replacement of the failed units and
preventive replacement of the units in state 1. After maintenance, all the
units are in state 0.

• Replacements are assumed to be instantaneous and perfect which bring
the units to the as-good-as-new state.

• The optimal policy minimizes the long-run expected average cost per unit
time.
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We also consider the following cost components:

• C0, C1: Operating cost rates of each unit in state 0 and state 1, respectively

• CF : Failure replacement cost of each unit

• CP: Preventive replacement cost of each unit

• CD: Cost rate of loss production when production rate of the system is
below the demand rate

• CE : Profit rate from excess production

• CK: Cost of sending maintenance team to do maintenance

3.1 Development of the Optimal Policy

The objective here is to derive an optimal replacement policy such that the
long-run expected average cost per unit time is minimized. According to the
renewal theory, it is given by:

g =
Expected Cycle Cost

Expected Cycle Length
=

E(CC)

E(CL)
. (7)

Let Ei j be the time instant when the system is identified to be in state (i, j) ∈ S

and Xδ (i, j) be the expected time from Ei j to the completion of replacement
under policy δ . It can be calculated recursively using the following equations:
when 0≤ i < r, j = 0,

Xδ (i, j) =
1

λ
(1)
i j +λ

(2)
i j

+
λ
(1)
i j

λ
(1)
i j +λ

(2)
i j

Xδ (i, j+1)+
λ
(2)
i j

λ
(1)
i j +λ

(2)
i j

Xδ (i+1, j),

when 0≤ i < r, j = M− i,

Xδ (i, j) =
1
γi j

+Xδ (i+1, j−1),

when 0≤ i < r, 1≤ j ≤M− i−1,

Xδ (i, j) =
1

λ
(1)
i j +λ

(2)
i j + γi j

+
λ
(1)
i j

λ
(1)
i j +λ

(2)
i j + γi j

Xδ (i, j+1)
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+
λ
(2)
i j

λ
(1)
i j +λ

(2)
i j + γi j

Xδ (i+1, j)+
γi j

λ
(1)
i j +λ

(2)
i j + γi j

Xδ (i+1, j−1),

Let Yδ (i, j) be the expected cost from Ei j to the completion of replacement
under policy δ and C(i, j) be a constant cost rate associated with each state
(i, j) of the process (N1(t),N2(t)), given by:

C(i, j) = (M− i− j)×C0 + j×C1 +CD×max{0,D− [(M− i− j)× p0 + j× p1]}
−CE×max{0, [(M− i− j)× p0 + j× p1]−D}.

Yδ (i, j) can also be obtained recursively using the idea of the above equations.
Now, we define a cycle as a period of time from starting time until the end of
the replacement time. Then, from Eq. 7, the long-run expected average cost
per unit time for policy δ is equal to:

g =
E(CC)

E(CL)
=

Yδ (0,0)
Xδ (0,0)

. (8)

We want to find δ ∗ such that:

g∗ = inf
δ∈∆

Yδ (0,0)
Xδ (0,0)

=
Yδ ∗(0,0)
Xδ ∗(0,0)

, (9)

where ∆ is the set of all policies δ .

4 Numerical Example

Numerical examples to illustrate the entire optimization procedure are pre-
sented in this section where the selected parameter values are given by [9].
We consider a wind farm consisting of M = 30 wind turbines subject to on-
line monitoring of their gearboxes. We assume that the deterioration process
of each gearbox follows a continuous time Markov chain with two operat-
ing states {0,1} and a failure state {2} which is absorbing. The sojourn
time in states {0} and {1} have an exponential distribution with parameters
λ0 = 0.4345× 10−3 and λ1 = 0.3036× 10−3, respectively and the transition
probability p01 equals to 0.60.
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Table 1: Optimal Decision Variable and Average Cost for M = 30

CD

CE
0 0.02 0.04

0.4
rˆ* 8 3 2

Average cost 455.42 401.39 328.49

0.6
rˆ* 7 3 2

Average cost 461.52 402.49 329.30

0.8
rˆ* 6 3 2

Average cost 465.66 403.59 330.10

1
rˆ* 5 3 2

Average cost 468.97 404.69 330.91

To optimize maintenance strategies, we study a system with the above con-
siderations and also assume that each turbine is working in the wind farm with
a rated capacity of 1.5 MW and capacity factors of 30% and 22% in state 0 and
1, respectively. These capacity factors result in the output of p0 = 450 kWh
for the units in state 0, and the output of p1 = 330 kWh for the units in state 1,
respectively. We assume the demand rate of the wind farm is D = 9000 kWh,
for systems with M = 30 number of units, respectively.

Failure cost is CF = $78368 and preventivemaintenancecostisC˙p=$8182 .
To analyze the sensitivity of the optimal policies for different values of the lost
production cost rate CD and profit rate from the excess production CE , they
are taken as follows: CD = 0.4, 0.6, 0.8, 1 and CE = 0, 0.02, 0.04. Another
cost parameter is CK which is considered to be 3000 per visit of the farm with
M = 30 units, respectively. We assume that the lead time is u = 100, which is
constant.

The results of optimal decision variable and average cost for various cost
rate values and number of units are presented in Table 1. According to this
table, we can observe that for a give CD, the threshold to perform maintenance
decreases by the increase of CE and for a given CE , when the lost demand
cost rate increases, the threshold to perform maintenance decreases or remains
constant.



The 7th Seminar on Reliability Theory and its Applications 77

References

[1] Ashayeri, J., Teelen, A., & Selenj, W. (1996). A production and main-
tenance planning model for the process industry. International journal of

production research, 34(12), 3311-3326.

[2] Alaswad, S., & Xiang, Y. (2017). A review on condition-based mainte-
nance optimization models for stochastically deteriorating system. Relia-
bility Engineering & System Safety, 157, 54-63.

[3] Ding, S. H., & Kamaruddin, S. (2015). Maintenance policy optimization-
literature review and directions. The International Journal of Advanced

Manufacturing Technology, 76(5), 1263-1283.

[4] Eryilmaz, S., & Pekalp, M. H. (2020). On optimal age replacement policy
for a class of coherent systems. Journal of Computational and Applied

Mathematics, 377, 112888.

[5] Jafari, L., Naderkhani, F., & Makis, V. (2017). Joint optimization of main-
tenance policy and inspection interval for a multi-unit series system using
proportional hazards model. Journal of the operational research society,
1-12.

[6] Ho, L. S. T., Xu, J., Crawford, F. W., Minin, V. N., & Suchard, M. A.
(2018). Birth/birth-death processes and their computable transition prob-
abilities with biological applications. Journal of mathematical biology,

76(4), 911-944.

[7] Keizer, M. C. O., Teunter, R. H., & Veldman, J. (2017). Joint condition-
based maintenance and inventory optimization for systems with multiple
components. European Journal of Operational Research, 257(1), 209-222.

[8] Salari, N., & Makis, V. (2017). Optimal preventive and opportunistic main-
tenance policy for a two-unit system. The International Journal of Ad-

vanced Manufacturing Technology, 89(1-4), 665-673.



Azizi, F. and Haghighi, F. 78

[9] Salari, N., & Makis, V. (2017). Comparison of two maintenance policies
for a multi-unit system considering production and demand rates. Interna-

tional Journal of Production Economics, 193, 381-391.

[10] Sheu, S. H., Liu, T. H., Zhang, Z. G., & Tsai, H. N. (2020). Optimum re-
placement policy for cumulative damage models based on multi-attributes.
Computers & Industrial Engineering, 139, 106206.



The 7th Seminar on Reliability Theory and its Applications

Estimation of P(Y < X) for the Skew-normal Distribution Under
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Abstract: This paper deals the inference of R = P(Y < X) for skew-normal
distribution based on progressively Type-II censored samples. To do this, the
MLE of R and the Bayes estimator and the corresponding credible interval are
extracted using Gibbs sampling. The MLE, the Bayes estimator and confi-
dence interval are acquired in the skew-normal distribution with known scale
parameter explicitly. Finally, the inference of the reliability parameter using
the proposed methods is performed on artificial and real datasets.

Keywords: Bayesian and classical inference, Progressive Type-II censoring,
Stress-strength.

1 Introduction

The reliability parameter, R = P[Y < X ], is one of the important problems in
reliability theory. The strength, X , and the stress, Y , are considered as random
variables. The system fails whenever X is less than Y .
Several authors have studied the inference of the R by using different classes

1Babayi, S: s.babayi@urmia.ac.ir
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of statistical distribution. Kotz et al. [1] provided a comprehensive review of
the development of these studies until 2003.
The Type-II progressive censoring scheme, one of the most widespread cen-
sorship schemes used in reliability, is as follows: Let n units are subjected to
a test and set m≤ n number of failures using a given scheme (R1,R2, . . . ,Rm).
Randomly, R1 of the n− 1 surviving units are chosen at the time of the first
failure and removed from the experiment. Likewise, R2 of the n−R1−2 sur-
viving units are withdrawn randomly at the time of the second failure and the
rest. Finally, at the time of the mth failure, all remaining surviving observa-
tions, n−R1−R2− ...−Rm−1−m are eliminated. For more information about
progressively censoring, see [2].
Cumulative distribution function (CDF) of skew-normal (SN) distribution is
as follows

F(x;α,σ) = 1− [1−Φ(
x
σ
)]α , −∞ < x <+∞, (1)

where σ ,α ∈ (0,+∞) and Φ(.) denote the CDF of standard normal distribu-
tion. The probability density function (PDF) related to the CDF (1) is

f (x;α,σ) =
α

σ
φ(

x
σ
)[1−Φ(

x
σ
)]α−1, −∞ < x <+∞, (2)

where φ(.) is the PDF of standard normal distribution. α and σ are the shape
and scale parameters, respectively. If set α = 1 and σ = 1, F becomes standard
normal distribution function.

2 The MLE of R

We want to estimate the R in which X ∼ SN(α,σ) and Y ∼ SN(β ,σ), and X

and Y are independent random variables. Hence,

R = P(Y < X)

=
∫ +∞

−∞

∫ x

−∞

α

σ
φ(

x
σ
)[1−Φ(

x
σ
)]α−1.

β

σ
φ(

y
σ
)[1−Φ(

y
σ
)]β−1dydx

= 1−
∫ +∞

−∞

α

σ
φ(

x
σ
)[1−Φ(

x
σ
)]α−1[1−Φ(

x
σ
)]β dx
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=
β

α +β
. (3)

Therefore, to estimate the R, we first evaluate the MLE of σ , α and β based
on progressively Type-II censored data. Let X1:m1:n1,X2:m1:n1, ...,Xm1:m1:n1 and
Y1:m2:n2,Y2:m2:n2, ...,Ym2:m2:n2 be two progressively Type-II censored samples
from SN(α,σ) and SN(β ,σ) with censoring schemes (R1,R2, ...,Rm1) and
(S1,S2, ...,Sm2), respectively. So, the likelihood function of the observed sam-
ple is given by ([2])

L(α,β ,σ) = [c1

m1

∏
i=1

f (xi:m1:n1)[1−F(xi:m1:n1)]
Ri]

× [c2

m2

∏
i=1

f (yi:m2:n2)[1−F(yi:m2:n2)]
Si],

where

c1 = n1(n1−R1−1) · · ·(n1−R1−R2−·· ·−Rm1−1−m1 +1),

and

c2 = n2(n2−S1−1) · · ·(n2−S1−S2−·· ·−Sm2−1−m2 +1).

considering the 1−Φ(a) = Φ(−a), the log-likelihood function is given by

l(α,β ,σ) =c− (m1 +m2) lnσ +m1 lnα +m2 lnβ +
m1

∑
i=1

ln[φ(
xi:m1:n1

σ
)]

+
m2

∑
i=1

ln[φ(
yi:m2:n2

σ
)]+

m1

∑
i=1

(αRi +α−1) ln[Φ(−
xi:m1:n1

σ
)]

+
m2

∑
i=1

(βSi +β −1) ln[Φ(−
yi:m2:n2

σ
)].

Hence, the MLEs of α and β , denote by α̂(σ̂) and β̂(σ̂), are

α̂(σ̂) =−
m1

m1
∑

i=1
(Ri +1) ln[Φ(−Xi:m1:n1

σ̂
)]
, (4)
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β̂(σ̂) =−
m2

m2
∑

i=1
(Si +1) ln[Φ(−Yi:m2:n2

σ̂
)]
, (5)

and σ̂ could be computed using the following non-linear equation via an iter-
ative scheme

g(σ) = σ , (6)

where

g(σ) = (m1 +m2)
−1

[
1
σ

m1

∑
i=1

x2
i:m1:n1

+
m1

∑
i=1

(α̂(σ)Ri + α̂(σ)−1)xi:m1:n1

×h(
xi:m1:n1

σ
)+

1
σ

m2

∑
i=1

y2
i:m2:n2

+
m2

∑
i=1

(β̂(σ)Si + β̂(σ)−1)yi:m2:n2

×h(
yi:m2:n2

σ
)

]
, (7)

and h(t) = φ(t)
1−Φ(t) is the hazard rate function of the standard normal distribu-

tion.
So, from the invariant property of the ML estimators, the MLE of the R is
evaluated as

R̂ =
β̂(σ̂)

α̂(σ̂)+ β̂(σ̂)

. (8)

2.1 Bayesian estimation of R

We develop the Bayesian inference of R based on the Bayesian estimation of
the parameters α , β and σ . We assume α , β and σ follow the conjugate
independent gamma priors. Therefore,

πi(θi) =
bai

i
Γ(ai)

θ
ai−1
i e−biθi, θi > 0,ai > 0,bi > 0, i = 1,2,3 (9)

where (θ1,θ2,θ3) = (α,β ,σ).

The joint density of the data, α , β and σ is

L(data,α,β ,σ) = L(data |α,β ,σ )×Π
3
i=1πi(θi).
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Therefore, the joint posterior density of α , β and σ given data can be written
as

L(α,β ,σ |data) =
L(data,α,β ,σ)∫

∞

0
∫

∞

0
∫

∞

0 L(data,α,β ,σ)dαdβdσ
. (10)

Since (10) cannot be determined in a closed form, therefore, to perform infer-
ence of the R, the MCMC methods are used. The posterior PDFs of α , β and
σ are given in the following way:

α |β ,σ ,data ∼ Γ(a1 +m1,b1−
m1

∑
i=1

(Ri +1) lnΦ(−
xi:m1:n1

σ
)),

β |α,σ ,data ∼ Γ(a2 +m2,b2−
m2

∑
i=1

(Si +1) lnΦ(−
yi:m2:n2

σ
)),

and

π(σ |α,β ,data) ∝ σ
a3+m1+m2−1e−b3σ

×
m1

∏
i=1

φ(
xi:m1:n1

σ
)

m1

∏
i=1

(Φ(−
xi:m1:n1

σ
))αRi+α−1

×
m2

∏
i=1

φ(
yi:m2:n2

σ
)

m2

∏
i=1

(Φ(−
yi:m2:n2

σ
))βSi+β−1, (11)

where Γ(., .) stands for Gamma distribution.
The posterior PDF of σ is not known. Based on Figure 2, the normal distribu-
tion is a good proposal. Hence, we apply the normal proposal distribution to
simulate this distribution using the Metropolis-Hasting method.

The posterior mean and variance of the R can evaluate as

Ê(R |data) =
1
T

T

∑
j=1

R( j), (12)

and

V̂ (R |data) =
1
T

T

∑
j=1

(R( j)− Ê(R |data))2,

Figure 2 displays graph for a sequence of 1000 generations from posterior
density functions of scale parameter.



The 7th Seminar on Reliability Theory and its Applications 84

Figure 1: A sequence of 1000 generations from posterior density functions of σ

.

By choosing the shortest length from

{(R(1),R([(1−γ)T ])),(R(2),R([(1−γ)T ]+1)) . . . ,(R([γT ]),R(T ))}

, the HPD credible interval is determined, where R(i) is the ith order statistics
from sample with T size.

3 Estimation of R with known scale parameter

The estimation of R is considered when the common scale parameter is known
and equals 1.

3.1 The MLE of R

Considering to (8), the MLE of R will be

R̂ =
β̂

α̂ + β̂
=

1
1+ m1W2

m2W1

, (13)

where W1 =−∑
m1
i=1(Ri+1) ln(Φ(−Xi:m1:n1)) and W2 =−∑

m2
i=1(Si+1) ln(Φ(−Yi:m2:n2)).

Lemma 3.1. Let {X1:m1:n1,X2:m1:n1, ...,Xm1:m1:n1} be progressively Type-II cen-

sored samples from SN(α,σ) with censoring schemes (R1,R2, ...,Rm1). By
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Figure 2: Proposal and posterior density functions of the scale parameter

defining

Z1 =−n1 lnΦ(−X1:m1:n1),

Zi = (n1−
i−1

∑
k=1

Rk− i+1)

[
− lnΦ(−Xi:m1:n1)− (− lnΦ(−Xi−1:m1:n1)

]
,

i = 1,2, . . . ,m1,

distribution of Zi, i = 1, . . . ,m1 is exponential with mean 1
α

.

Proof. See Balakrishnan and Aggarwala [2].

Theorem 3.2. Suppose that {X1:m1:n1,X2:m1:n1, ...,Xm1:m1:n1} and

{Y1:m2:n2,Y2:m2:n2, ...,Ym2:m2:n2} be two progressively Type-II censored samples

from SN(α,σ) and SN(β ,σ) with censoring schemes (R1,R2, ...,Rm1) and

(S1,S2, ...,Sm2), respectively. Then the 100(1− γ)% CI for R is[
1

1+( 1
R̂
−1)F2m1,2m2;1−γ/2

,
1

1+( 1
R̂
−1)F2m1,2m2;γ/2

]
(14)

where F2m1,2m1;γ/2 and F2m1,2m2;1−γ/2 are the lower and upper γ

2th percentile

points of the F distribution with 2m1 and 2m2 degrees of freedom.
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Proof. From Lemma (3.1) it is evident that

W1 =−
m1

∑
i=1

(Ri +1) lnΦ(−Xi:m1:n1) =
m1

∑
i=1

Zi ∼ Γ(m1,α),

and 2αW1 is the chi-square random variable with 2m1 df parameter and like-
wise, 2βW2 is the chi-square random variable with 2m2 df. Thus by using

R̂∼ 1
1+ α

β
F

or
R

1−R
× 1− R̂

R̂
∼ F2m1,2m2,

and

P(F2m1,2m2;γ/2 <
R

1−R
× 1− R̂

R̂
< F2m1,2m2;1−γ/2) = 1− γ.

the proof is completed.

From Theorem (3.2), the PDF of R̂ is resulted as:

fR̂(r) =
1

B(m2,m1)r2

(m2β

m1α

)m2 (1−r
r )m2−1

(1+ m2β

m1α
(1−r

r ))m1+m2
, 0 < r < 1. (15)

3.2 The Bayesian estimation of R

Since we assumed that the parameters are a priori independent with gamma
density, the posterior density of α and β are independent Γ(a1 +m1,b1 +W1)

and Γ(a2+m2,b2+W2), receptively. Therefore, the posterior disrtibution of R

will be

π(R|data) = c.ra1+m1−1(1− r)a2+m2−1(1− zr)−(a1+a2+m1+m2), (16)

where 0 < r < 1,

c =
Γ(a1 +a2 +m1 +m2)

Γ(a1 +m1)Γ(a2 +m2)
.

(
b2 +W2

b1 +W1

)a2+m2

(17)

and z = 1− b2+W2
b1+W1

.
By assuming the quadratic loss function, the Bayesian estimation will be

the posterior mean which could be computed by considering the following
well-known equation

B(b,c−b)2F1(a,b;c;z) =
∫ 1

0
xb−1(1− x)c−b−1(1− zx)−a dxc > b > 0, (18)



Babayi, S., Seidpisheh, M. and Gholami, Gh 87

in which B(b,c−b) and 2F1(a,b;c;z) are beta and hypergeometric functions,
receptively.

Therefore, the Bayesian estimation of R is

R̂Bayes = E(R|data) =
Γ(a1 +a2 +m1 +m2)

Γ(a1 +m1)Γ(a2 +m2)(
b2 +W2

b1 +W1

)a2+m2

B(a1 +m1 +1,a2 +m)

×F1

(
q,a1 +m1 +1;a1 +a2 +m1 +m2 +1;1− b2 +W2

b1 +W1

)
, (19)

where q = a1+a2+m1+m2. The variance of the Bayesian estimator could be
achieved by using

E(R2|data) =
Γ(a1 +a2 +m1 +m2)

Γ(a1 +m1)Γ(a2 +m2)
.

(
b2 +W2

b1 +W1

)a2+m2

B(a1 +m1 +2,a2 +m)

×2 F1

(
p,a1 +m1 +2;a1 +a2 +m1 +m2 +2;1− b2 +W2

b1 +W1

)
,

where p = a1+a2+m1+m2. To construct the HPD intervals, as the posterior
is not tractable, we can generate a sample from the posterior using indirect
sampling algorithm, such as the accept-reject method.

4 Data Analysis

Two real strength data reported by Badar & Priest [3] are analyzed. We fit-
ted the SN distribution models for two datasets separately. We also applied
the Kolmogorov-Smirnov (K-S) test for two datasets that result reported in
Table 1. According to the results, SN distribution fits well to both datasets.
Moreover, Figures 3 confirms the appropriate fit. According to Table 1, it is
clear that the scale parameters of two datasets are almost the same, Assuming
equality, R̂ = 0.5766 and the related CI of R is (0.4964,0.6568).
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Table 1: The Kolmogorov-Smirnov test for SN distributions on the real datasets.

Dataset σ̂ α̂ K-S p-value

1 0.5962 0.8756 0.1013 0.5056

2 0.5096 1.0727 0.0412 0.9995

Two progressively censored schemes of Babayi and Khorram [4] are used
to choose sample from the real data. Using equations (2) and (12), the MLE
and Bayesian estimation of the R are 0.5530 and 0.5582, respectively. Ac-
cording to Congdon [5] and Kundu and Gupta [6], we set P1 to compute the
Bayesian estimation. The 95% CIs based on the MLE and Bayesian estima-
tion are (0.3450,0.7610) and (0.3547,0.7428), respectively. The 95% per-
centile bootstrap ([7]) and bootstrap-t methods ([8]) CIs are (0.3319,0.7463)
and (0.3407,0.7513), respectively. The results show that inference based on
the progressively censored dataset is not significantly different from the com-
pleted dataset.
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Distributed Components having Archimedean Copulas
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Abstract: In this paper, we investigate the ordering properties of order statis-
tics from dependent observations. We obtain the usual stochastic order for the
smallest order statistic of samples having Kumaraswamy generalized family
and Archimedean survival copulas. Some examples are provided to illustrate
the established results.

Keywords: Archimedean copula, Kumaraswamy-G distribution, Majoriza-
tion, Series systems, Usual stochastic order.

1 Introduction

Series and parallel systems are two basic systems which play prominent roles
in various applications in reliability engineering. An n-component system with
series (parallel) structure fails (works) if at least one of the components of the
system fails (works). Let X1,X2, ...,Xn denote the lifetimes of n components
that can be used to built up an n component system. If X1:n ≤ . . .≤ Xn:n denote
the ordered lifetimes of the components then it is known that X1:n and Xn:n cor-
respond to the lifetimes of series and parallel systems, respectively. Reliability
and stochastic properties of series and parallel systems have been considered
by various researchers under different scenarios. For example, stochastic com-
parisons of the lifetimes of series and parallel systems, in the case of
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heterogeneous component lifetimes with with exponentiated Weibull (EW)
distributions, are considered in [4] and [8] and by [2] in the case of heteroge-
neous components with generalized exponential (GE) distributions. For com-
prehensive references one may refer to [6] and [1].

The paper by Kumaraswamy [7] proposed Kumaraswamy’s distribution (Kw
distribution) on (0,1). The cumulative distribution function of a two-parameter
Kw distribution with parameters (δ ,γ), written as Kw(δ ,γ), is given by

F(x) = 1− (1− xδ )γ , 0 < x < 1,δ > 0,γ > 0, (1)

where δ and γ are the shape parameters. Generalizing this distribution, Cordeiro
and de Castro [3] have proposed a new family of generalized distributions,
called Kumaraswamy generalized family of distributions (called Kw-G distri-
bution). The distribution function of the Kw-G random variable is represented
as

F(x) = 1− (1− (G(x))δ )γ , x > 0,δ > 0,γ > 0, (2)

For convenience, henceforth, we denote Kw−G(δ ,γ). Note that if G(x) = x,
2 corresponds to the distribution function of Kw distribution. For detailed dis-
cussion on this distribution, one may see [3]. Recently, Kundu and Chowdhury
[9] studied some ordering properties of sample minimum from a Kw-G family
of distributions. For maximums from independent and heterogeneous Kw-G
samples, Kundu and Chowdhury [10] studied the ordering properties under
random shock. Holding the assumption of independence, Kayal [5] studied
stochastic comparisons of the series and parallel systems comprising Kw-G
family of distributions.

By removing the condition of independence, this paper is devoted to fur-
ther investigating how heterogeneity of the sample impact order statistics. We
study the smallest order statistics from two dependent samples with Kw-G
family of distributions. We derive the usual stochastic order of the smallest
order statistics.

The organization of the paper is laid out as follows: Section 2 introduces
the required definitions, and Section 3 presents several useful lemmas which
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are used throughout the paper and section 4 studies the usual stochastic order
of the smallest order statistics from two Kw-G samples with Archimedean
survival copulas. Finally Section 5 concludes the paper.

2 Preliminaries

There are many ways in which a random variable X can be said to be smaller
than another random variable Y . In the usual stochastic ordering case, a ran-
dom variable X with survival function F̄ = 1−F is stochastically smaller than
a random variable Y with survival function Ḡ = 1−G, denoted by X ≤st Y , if
F̄(x) ≤ Ḡ(x) for all x. For more details on various kinds of stochastic orders,
one may refer to [15].

For a random vector X = (X1, . . . ,Xn) with the joint distribution function F ,
joint survival function F̄ and univariate survival functions F̄1, . . . , F̄n, if there
exists some Ĉ : [0,1]n −→ [0,1] such that, for all xi , i = 1, . . . ,n,

F̄(x1, . . . ,xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)),

then Ĉ is called as the survival copula of X . A real function φ is n-monotone on
(a,b)⊆R if (−1)n−2φ (n−2) is decreasing and convex in (a,b) and (−1)kφ (k)(x)≥
0 for all x ∈ (a,b),k = 0,1, . . . ,n− 2, in which φ (i)(.) is the ith derivative of
φ(.). For a n-monotone (n ≥ 2) function φ : [0,+∞) −→ [0,1] with φ(0) = 1
and limx→+∞ φ(x) = 0, let ψ = φ ,−1 be the right continuous inverse of ψ , then

Cφ(u1, . . . ,un) = φ(ψ(u1)+ . . .+ψ(un)), for allui ∈ [0,1], i = 1, . . . ,n,

is called an Archimedean copula with generator φ . Archimedean copulas
cover a wide range of dependence structures including the independence cop-
ula. For more detail on Archimedean copulas, readers may refer to [14] and
[13].

Majorization orders are quite useful and powerful in establishing various
inequalities. For preliminary notations and terminologies on majorization the-
ory, see [12]. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) be two real vectors anf
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x(1)≤ . . .≤ x(n) be the increasing arrangement of the components of the vector
x.

Definition 2.1. The vector x is said to be

(i) weakly submajorized by the vector y (denoted by x �w y) if ∑
n
i= j x(i) ≤

∑
n
i= j y(i) for all j = 1, . . . ,n,

(ii) weakly supermajorized by the vector y (denoted by x
w
� y) if ∑

j
i=1 x(i) ≥

∑
j
i=1 y(i) for all j = 1, . . . ,n,

(iii) majorized by the vector y (denoted by x
m
� y) if ∑

n
i=1 xi = ∑

n
i=1 yi and

∑
j
i=1 x(i) ≥ ∑

j
i=1 y(i) for all j = 1, . . . ,n−1.

It is well-known that

x
w
�y⇐= x

m
�y =⇒ x�w y, for x,y ∈ Rn

+.

The random vector X = (X1, . . . ,Xn) is said to follow the Kw-G distribu-
tion if Xi has the distribution function Fi(x) = 1− (1− (G(x))δi)γi for i =

1, . . . ,n, where G(x) is the baseline distribution function. Specifically, by
X ∼ Kw−G(G,δ ,γ,φ) we denote the sample having the Archimedean cop-
ula with generator φ and following a Kw-G model with baseline distribution
function G.

3 Some useful lemmas

Before proceeding to main results, let us present some lemmas to be utilized in
the sequel. The first two lemmas concern majorization, Schur-convexity and
Schur-concavity.

Lemma 3.1 ([12], Theorem 3.A.4). Suppose I⊂R is an open interval and Φ :
In −→ R+ is continuously differentiable. Necessary and sufficient conditions
for Φ to be Schur-convex (Schur-concave) on In are

(i) Φ is symmetric on In,
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(ii) for i 6= j and all z ∈ In,

(zi− z j)

(
∂Φ(z)

∂ zi
− ∂Φ(z)

∂ z j

)
≥ (≤)0,

where ∂Φ(z)
∂ zi

denotes the partial derivative of Φ with respect to its i-th argument.

Lemma 3.2 ([12], Theorem 3.A.8). For a function l on A ∈ Rn, x �w (
w
�)y

implies l(x)≤ l(y) if and only if it is increasing (decreasing) and Schur-convex
on A.

The following lower orthant order on Archimedean copulas will also be
utilized in the sequel.

Lemma 3.3 ([11], Lemma A.1). For two n-dimensional Archimedean copulas

Cφ1(u) and Cφ2(u), if ψ2 ◦ φ1 is super-additive, then Cφ1(u) ≤ Cφ2(u) for all

u ∈ [0,1]n.

Lemma 3.4 ([11], Lemma 3.4). For any s ∈ [0,1], J1(γ,s,φ) =

φ(∑
n
i=1 ψ(sγi)) is decreasing in γi for i = 1, . . . ,n. Furthermore, J(γ,x,φ) is

Schur-concave (Schur-convex) with respect to γ whenever φ is log-convex (log-

concave).

4 On the smallest order statistic

This section studies the usual stochastic order on the smallest order statistic
from the Kw-G samples coupled by Archimedean survival copulas.

In the following theorem, we consider two minimum order statistics that are
formed from two different sets of random variables having different sets of
shape parameters δ but the same set of shape parameters γ .

Theorem 4.1. Suppose, for X ∼Kw−G(δ ,γ,φ1) and X∗∼Kw−G(δ ∗,γ,φ2),

φ1 or φ2 is log-convex and ψ2◦φ1 is super-additive, then (δ1, . . . ,δn)
w
�(δ ∗1 , . . . ,δ ∗n )

implies X1:n ≤st X∗1:n.
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Proof. X1:n and X∗1:n have their respective survival functions, for x≥ 0,

F̄X1:n(x) = p(Xk > x,1≤ k ≤ n) = φ(
n

∑
i=1

ψ((1− (G(x))δi)γ))) = J(δ ,γ,x,φ1),

(3)

F̄X∗1:n
(x) = p(Xk > x,1≤ k≤ n) = φ(

n

∑
i=1

ψ((1−(G(x))δ ∗i )γ))) = J(δ ∗,γ,x,φ2).

(4)
We only prove the case that φ1 is log-convex, and the other case can be finished
similarly. The partial derivatives of J(δ ,γ,x,φ1) with respect to δi are

∂J(δ ,γ,x,φ1)

∂δi
=−γ(1− (G(x))δi)γ−1 log(G(x))(G(x))δi×

φ ′(∑
n
i=1 ψ((1− (G(x))δi)γ)))

φ ′(ψ((1− (G(x))δi)γ)))
≥ 0,

for all x > 0.

Thus J(δ ,γ,x,φ1) is increasing with respect to δi’s.

To prove its Schur-concavety, it follows from Lemma 3.1 that we have to
show that for i 6= j,

(δi−δ j)

(
∂J(δ ,γ,x,φ1)

∂δi
− ∂J(δ ,γ,x,φ1)

∂δ j

)
≤ 0,

that is, for i 6= j,

−γ log(G(x))φ ′(
n

∑
i=1

ψ((1− (G(x))δi)γ))(δi−δ j)

(
(G(x))δi

1− (G(x))δi

φ1(ψ1((1− (G(x))δi)γ))

φ ′1(ψ1((1− (G(x))δi)γ))
− (G(x))δ j

1− (G(x))δ j

φ1(ψ1((1− (G(x))δ j)γ))

φ ′1(ψ1((1− (G(x))δ j)γ))

)
.

Note that the log-convexity of φ1 implies the decreasing property of φ1
φ ′1

. Since

ψ1((1− (G(x))δi)γ) is decreasing in δi > 0, then
φ1(ψ1((1− (G(x))δi)γ))

φ ′1(ψ1((1− (G(x))δi)γ))
is

increasing in δi > 0. Also the decreasing property of
(G(x))δi

1− (G(x))δi
implies that
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(G(x))δi

1− (G(x))δi

φ1(ψ1((1− (G(x))δi)γ))

φ ′1(ψ1((1− (G(x))δi)γ))
is increasing in δi > 0. So, for i 6= j,

(δi−δ j)

(
∂J(δ ,γ,x,φ1)

∂δi
− ∂J(δ ,γ,x,φ1)

∂δ j

)
≤ 0,

Then Schur-concavety of J(δ ,γ,x,φ1) follows from Lemma 3.1. According

to Lemma 3.2 (δ1, . . . ,δn)
w
�(δ ∗1 , . . . ,δ ∗n ) implies J(δ ,γ,x,φ1)≤ J(δ ∗,γ,x,φ1).

On the other hand, since ψ2 ◦ φ1 is super-additive by Lemma 3.3, we have
J(δ ∗,γ,x,φ1)≤ J(δ ∗,γ,x,φ2). So, it holds that

J(δ ,γ,x,φ1)≤ J(δ ∗,γ,x,φ1)≤ J(δ ∗,γ,x,φ2).

That is, X1:n ≤st X∗1:n.

Example 4.2. Suppose that X and X∗ have either of the following two depen-
dence structures. (i) Gumbel survival copulas with respective generators

φ1(x) = e−x
1

β1 , φ2(x) = e−x
1

β2 ,β2 ≥ β1 ≥ 1;

(ii) Archimedean survival copulas with respective generators

φ1(x) = (x
1

β1 )−1, φ1(x) = (x
1

β1 )−1,β2 ≥ β1 ≥ 1.

It is easy to see that φi is log-convex for i = 1,2. In view of ψ2(φ1(0)) = 0 and

the convexity of ψ2(φ1(x)) = x
β2
β1 , we conclude that ψ2(φ1(x)) is super-additive

by Proposition 21.A.11 in [12] .

Kayal [5] showed that if X1, . . . ,Xn be a set of independent random vari-
ables with Xi ∼ Kw−G(δi,γ), i = 1, . . . ,n and X∗1 , . . . ,X

∗
n be another set of

independent random variables with X∗i ∼ Kw−G(δ ∗i ,γ), i = 1, . . . ,n. Then

(δ1, . . . ,δn)
w
�(δ ∗1 , . . . ,δ ∗n ) implies X1:n ≤st X∗1:n. (5)

Theorem 1 partially improves the implication in 4 by relaxing the indepen-
dence assumption in 4 under the Kw-G model.

Theorem 4.3. Suppose, for X ∼Kw−G(δ ,γ,φ1) and X∗∼Kw−G(δ ∗,γ,φ2),

φ1 or φ2 is log-convex and ψ2◦φ1 is super-additive, then (δ1, . . . ,δn)
m
�(δ ∗1 , . . . ,δ ∗n )

implies X1:n ≤st X∗1:n.
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Proof. We know that (δ1, . . . ,δn)
m
�(δ ∗1 , . . . ,δ ∗n ) =⇒ (δ1, . . . ,δn)

w
�(δ ∗1 , . . . ,δ ∗n ).

Thus, the proof readily follows from Theorem 1 .

In the next theorem we assume that two sets of random variables have the
same set of shape parameters δ but different sets of shape parameters γ .

Theorem 4.4. Suppose, for X ∼Kw−G(δ ,γ,φ1) and X∗∼Kw−G(δ ∗,γ∗,φ2),
φ1 or φ2 is log-convex and ψ2◦φ1 is super-additive, then (γ1, . . . ,γn)�w (γ∗1 , . . . ,γ

∗
n)

implies X1:n ≤st X∗1:n.

Proof. X1:n and X∗1:n have their survival functions J1(γ,1− (G(x))δ ,φ1) and
J1(γ,1−(G(x))δ ,φ2), respectively. Assume that φ1 is log-convex. From Lemma
3.4, it follows that −J1(γ,1− (G(x))δ ,φ1) is increasing in γi for i = 1, . . . ,n
and Schur-convex with respect to γ . According to Lemma 3.2, (γ1, . . . ,γn)�w

(γ∗1 , . . . ,γ
∗
n) implies−J1(γ,1−(G(x))δ ,φ1)≥−J1(γ

∗,1−(G(x))δ ,φ1). On the
other hand, since ψ2 ◦φ1 is super-additive by Lemma 3.3, we have J1(γ

∗,1−
(G(x))δ ,φ1)≤ J1(γ

∗,1−(G(x))δ ,φ2). So, it holds that J1(γ,1−(G(x))δ ,φ1)≤
J1(γ

∗,1− (G(x))δ ,φ1)≤ J1(γ
∗,1− (G(x))δ ,φ2). Assuming log-convex φ2 in-

stead, in a similar manner we can obtain J1(γ,1− (G(x))δ ,φ1) ≤ J1(γ,1−
(G(x))δ ,φ2)≤ J1(γ

∗,1−(G(x))δ ,φ2). Both of the above two inequalities yield
X1:n ≤st X∗1:n.

The next result immediately follows from Theorems 1 and 4.4.

Theorem 4.5. Suppose, for X ∼Kw−G(δ ,γ,φ1) and X∗∼Kw−G(δ ∗,γ∗,φ2),
φ1 or φ2 is log-convex and ψ2◦φ1 is super-additive, then (γ1, . . . ,γn)�w (γ∗1 , . . . ,γ

∗
n)

and (δ1, . . . ,δn)
w
�(δ ∗1 , . . . ,δ ∗n ) implies X1:n ≤st X∗1:n.

The following theorem shows that we can get the ordering result in Theorem
?? under weakly supermajorization order.

Theorem 4.6. Suppose, for X ∼Kw−G(δ ,γ,φ1) and X∗∼Kw−G(δ ,γ∗,φ2),

φ1 or φ2 is log-concave and ψ1◦φ2 is super-additive, then (γ1, . . . ,γn)
w
�(γ∗1 , . . . ,γ∗n)

implies X1:n ≥st X∗1:n.
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Proof. X1:n and X∗1:n have their survival functions J1(γ,1− (G(x))δ ,φ1) and
J1(γ,1− (G(x))δ ,φ2), respectively. Assume that φ1 is log-concave. From
Lemma 3.4, it follows that J1(γ,1− (G(x))δ ,φ1) is decreasing in γi for i =

1, . . . ,n and Schur-convex with respect to γ . According to Lemma 3.2,

(γ1, . . . ,γn)
w
�(γ∗1 , . . . ,γ∗n) implies J1(γ,1−(G(x))δ ,φ1)≥ J1(γ

∗,1−(G(x))δ ,φ1).
On the other hand, since ψ1 ◦ φ2 is super-additive by Lemma 3.3, we have
J1(γ

∗,1− (G(x))δ ,φ1) ≥ J1(γ
∗,1− (G(x))δ ,φ2). So, it holds that J1(γ,1−

(G(x))δ ,φ1) ≥ J1(γ
∗,1− (G(x))δ ,φ1) ≥ J1(γ

∗,1− (G(x))δ ,φ2). Assuming
log-convex φ2 instead, in a similar manner we can obtain J1(γ,1−(G(x))δ ,φ1)≥
J1(γ,1−(G(x))δ ,φ2)≥ J1(γ

∗,1−(G(x))δ ,φ2). Both of the above two inequal-
ities yield X1:n ≥st X∗1:n.

Example 4.7. Let X and X∗ have the Gumbel-Hougaard survival copulas with
respective generators

φ1(x) = e
1

β1
(1−ex)

, φ2(x) = e
1

β2
(1−ex)

,1≥ β2 ≥ β1 > 0,

It is easy to see that φi is log-concave for i = 1,2. Since ψ1(φ2(x))is convex for
1≥ β2 ≥ β1 > 0, we conclude that ψ1(φ2(x)) is super-additive by Proposition
21.A.11 in [12] .

5 Concluding Remarks

This is the first try to study some stochastic comparisons of order statistics
from dependent and heterogeneous samples having Kumaraswamy general-
ized family. We derived the usual stochastic order for the smallest order statis-
tic of samples having Kumaraswamy generalized family and Archimedean
survival copulas. Several examples are provided to illustrate the established
results.
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Some Reliability Properties of Sequential (n− r+1)-out-of-n Systems
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Abstract: The hazard and reversed hazard rates are two important measures to
study the lifetime random variables in reliability theory, survival analysis and
stochastic modeling. In this article, we study the increasing hazard rate and
decreasing reversed hazard rate and some other related properties of sequential
(n− r+1)-out-of-n systems. Since we do not impose restrictions as previous
studies did, our findings yield new results for various useful models of ordered
random variables. Finally, some applications of these results are indicated.

Keywords: Aging properties, Record and Pfeifers record values, Sequential
order statistics, Total positivity.

1 Introduction

A system with n independent components which functions if and only if at
least n− r+1 of the components are working is called a (n− r+1)-out-of-n
system. Parallel and series systems are particular cases of such systems cor-
responding to r = n and r = 1, respectively. These systems play an important
role in reliability theory and life testing and in the real world. The lifetime of
such a system is described by the r-th order statistic (OS) in a sample of size

1Esna-Ashari, M.: esnaashari@irc.ac.ir
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n when assuming that the remaining components are not affected by fail-
ures. More generally, the failure of one component may influence the remain-
ing components. Thus, a more flexible model for a (n−r+1)-out-of-n system
should take the dependence structure into consideration. The failure of some
component of the system can more or less strongly influence the life-length
distributions of the remaining components. This can be thought of as damage
caused by the i-th failure in the system. For example, the breakdown of an
aircrafts engine will increase the load put on the remaining engines, such that
their lifetime should tend to be shorter. For dealing with this type of problem,
sequential order statistics (SOS) are proposed in [9, 10]. It is worth mentioning
that one of the most important and applicable case is SOS under proportional
hazard rate assumption which have a one to one correspondence to the gener-
alized order statistics (GOS) model introduced by [9, 10]. These models are
closely connected to several other models of ordered random variables and,
in particular they unify OS, progressively Type-II censored order statistics,
record values, Pfeifer’s record values, etc.

In the last three decades, a wide interest has been shown in investigating
several aging properties of OS and other ordered random variables. One of
the most important of these studies concerns the class of increasing hazard
rate distributions (IHR). See e.g., [4], [18] and [15] for OS and [12] for record
values. [9] generalized these results to GOS imposing some restrictions in his
Chapter V. Also, some aging properties of SOS were obtained by [20]. In
this article, obtaining useful lemmas and formulas, we prove that how some
reliability properties transfers among SOS.

The article is organized as follows. In Section 2, we recall some definitions
which is used in the paper including aging notions and the concept of SOS. In
Section 3, we study some aging properties among SOS. Finally, in Section 4,
we provide some applications in the submodels of SOS.
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2 Definitions and notions

We recall some definitions and well known notions which will be used in the
sequel. The word increasing (decreasing) is used for non-decreasing (non-
increasing) and all expectations are implicitly assumed to exist whenever they
are written.

2.1 Aging notions

For more details of the following concepts, we refer the reader to [11] and [4].

Definition 2.1. Let X and Y be subsets of the real line R. A function Λ :
X ×Y → R is said to be totally positive of order 2 (T P2) (reverse regular of
order 2 (RR2)) if

Λ(x1,y1)Λ(x2,y2)−Λ(x1,y2)Λ(x2,y1)≥ (≤)0,

for all x1 ≤ x2 in X and y1 ≤ y2 in Y or, equivalently, if Λ(x2,y)/Λ(x1,y) is
increasing (decreasing) in y when x1 ≤ x2.

Note that if the functions Λ1(x,y) and Λ2(x,y) are T P2 (RR2) in (x,y), then
their product is T P2 (RR2) in (x,y) (cf. [11], p.123).

Now, let X be univariate random variable with cdf F , survival function (sf)
F̄ = 1−F , and probability density function (pdf) f , respectively. We denote
the hazard rate of X by h = f/F̄ and its reversed hazard rate by r = f/F . Let
F−1 be the right continuous inverse (quantile function) of F .

Definition 2.2. The random variable X (or its distribution) is said to be
(i) increasing (decreasing) hazard rate, IHR (DHR), if F̄ is logconcave (log-
convex), or equivalently, h(x) is increasing (decreasing) in x;
(ii) increasing (decreasing) reversed hazard rate, IRHR (DRHR), if F is log-
convex (logconcave), or equivalently, r(x) is increasing (decreasing) in x;
(iii) increasing (decreasing) hazard rate average, IHRA (DHRA), if − ln F̄(x)

is starshaped, i.e.,− ln F̄(x)/x is increasing in x (anti starshaped, i.e.,− ln F̄(x)/x

is decreasing in x) when X is a non-negative random variable.
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2.2 Sequential order statistics

As a generalization of OS and record values, SOS and GOS were introduced
by [9, 10] as a unified approach to a variety of models of ordered random
variables with different interpretations and statistical applications. Sequential
order statistics are defined by means of a triangular scheme of random vari-
ables where the r-th line contains n− r+1 random variables with distribution
function Fi, i = 1, ...,n.

Definition 2.3. Let F1, ..., .Fn be continuous distribution functions with F−1
1 (1)≤

... ≤ F−1
n (1) and let {Y ( j)

r,n , 1 ≤ j ≤ n− r+ 1} be a sequence of independent
and identically distributed random variables each distributed according to Fr,
where r = 1, ...n. Let X ( j)

1,n = Y ( j)
1,n , 1 ≤ j ≤ n, and denote X∗1,n = minn

j=1 X ( j)
1,n .

For r = 2, ...,n, define X ( j)
r,n = F−1

r {Fr(Y
( j)
r,n )[1−Fr(X∗r−1,n)]+Fr(X∗r−1,n)} and

denote X∗r,n =minn−r+1
j=1 X ( j)

r,n . Then, X∗1,n, ...,X
∗
n,n are called SOS based on {F1, ...,Fn}

From now on we cosider a particular choice of the distribution functions
F1, ...,Fn, namely

Fr(t) = 1− (1−F(t))αr, r = 1, ...,n ,

with some distribution function F and positive real numbers α1, ...,αn. This is
usually referred as the proportional hazard rate assumption (see, e.g., [16] and
[8], for new extensions of proportional hazard rate model).

In this case, there exist several representations for the marginal pdf of SOS
(see, e.g., [6]). Suppose that n ∈ N, mi = (n− i+1)αi− (n− i)αi+1−1 ∈ R,
i = 1, ...,n−1, m̃n = (m1, ...,mn−1), if n≥ 2 (m̃n ∈R is arbitrary, if n = 1) and
γr(n, m̃n) = (n− r+1)αr for r = 1, ...,n. In this case, we denote r-th SOS by
X(r,n,m̃n). [7] obtained the expression

fX(r,n,m̃n)
(x) = cr−1(n, m̃n)[F̄(x)]γr(n,m̃n)−1gr(F(x)) f (x), x ∈ R, (1)

where cr−1(n, m̃n) = ∏
r
i=1 γi(n, m̃n), r = 1, ...,n, and gr is a particular Meijer’s

G-function. [19] rediscovered this representation by presenting an integral rep-
resentation for gr. According to Lemma 2.1 of Alimohammadi and Alamatsaz
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[1], we have the following recursive formula:

g1(u)≡ 1, gr(u) =
∫ u

0
gr−1(t)[1− t]mr−1dt, 0≤ u≤ 1, r = 2, ...,n. (2)

For example, if αi = 1, ∀i, or αi =
1

n−i+1, ∀i, then the SOS would convert
to the OS and record values, respectively (see Table 1 of [9]).

3 Main results

We need some properties for the marginal pdf of SOS. Alimohammadi and
Alamatsaz [1], Alimohammadi et al. [2, 3] studied logconcavity properties of
the function gr and GOS.

We first recall the following theorem known as the variation diminishing
property.

Theorem 3.1 ([11]). Let Λ : X ×Y →R be a T P2 Borel-measurable function,

dσ(y) be a sigma-finite measure defined on Y , and Λ1 : Y →R be a bounded

measurable function such that the integral Λ2(x) =
∫
Y Λ(x,y)Λ1(y)dσ(y) con-

verges absolutely. If Λ1 changes sign at most j times on Y and j ≤ 1, then

Λ2 changes sign at most j times on X . Moreover, if Λ2 changes sign j times,

then it must have the same arrangement of signs as does Λ1.

Lemma 3.2. Let gr′(u) =
∫ u

0 gr′−1(t)[1− t]m
′
r′−1dt, 0 ≤ u ≤ 1, r′ = 2, ...,n. If

r ≤ r′ and m′r′−i ≤mr−i for 1≤ i≤ r−1, then gr′(u)/gr(u) is increasing in u.

Proof. The ratio gr′(u)/gr(u) is increasing if, and only if, for every c > 0, the
function gr′(u)− cgr(u) has at most one change of sign, and if so, it would be
from − to +. From (2), we have

gr′(u)− cgr(u) =
∫ u

0
gr′−1(t)[1− t]m

′
r′−1dt− c

∫ u

0
gr−1(t)[1− t]mr−1dt

=
∫
R

Λ(u, t)Λ1(t)dt,

where

Λ(u, t) = I{0≤t≤u},Λ1(t) = gr−1(t)[1− t]mr−1

(
gr′−1(t)
gr−1(t)

[1− t]m
′
r′−1

[1− t]mr−1
− c

)
. (3)
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Obviously, gr′(u)/gr(u) is increasing for r = 1 and r′≥ 1. Furthermore,
gr′−1(t)
gr−1(t)

is increasing in t for r = 2 and r′≥ 2. Because of m′r′−i≤mr−i for 2≤ i≤ r−1,
now suppose that

gr′−1(t)
gr−1(t)

is increasing in t. Since m′r′−1≤mr−1, the expression
in parentheses of Λ1(t) changes sign at most once, and if once from − to
+. Also, Λ(u, t) is T P2. Therefore, the result follows using induction and
Theorem 3.1.

Lemma 3.3. The survival function of X(r,n,m̃n) is given by

P(X(r,n,m̃n) > x) =
r

∑
j=1

cr−1(n, m̃n)

∏
r
i= j γi(n, m̃n)

[F̄(x)]γ j(n,m̃n)g j(F(x)), x ∈ R. (4)

Proof. Using integration by parts and equations (2), (1) as well as the fact
mi−1 + γi(n, m̃n) = γi−1(n, m̃n)−1, we obtain

P(X(r,n,m̃) > x)

=
cr−1(n, m̃n)

γr(n, m̃n)
[F̄(x)]γr(n,m̃n)gr(F(x))

+
∫

∞

x

cr−1(n, m̃n)

γr(n, m̃n)
[F̄(y)]γr−1(n,m̃n)−1gr−1(F(y)) f (y)dy

...

=
r

∑
j=2

cr−1(n, m̃n)

∏
r
i= j γi(n, m̃n)

[F̄(x)]γ j(n,m̃n)g j(F(x))

+
∫

∞

x

cr−1(n, m̃n)

∏
r
i=2 γi(n, m̃n)

[F̄(y)]γ1(n,m̃n)−1 f (y)dy.

This yields (4).

Thus, the hazard rate of X(r,n,m̃n), the r-th SOS, is given by

hX(r,n,m̃n)
(x) =

f (x)
F̄(x)

[F̄(x)]γr(n,m̃n)gr(F(x))

∑
r
j=1

1
∏

r
i= j γi(n,m̃n)

[F̄(x)]γ j(n,m̃n)g j(F(x))
. (5)

Without the restriction m1 = m2 = ... = mn−1, [6] showed that if X is IHR,
then so is X(r,n,m̃n), for any r ∈ {1, ...,n} (see also Theorem 8 of [20]). From
now on, we extend this result. We need to recall the following theorem known
as the basic composition formula.
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Theorem 3.4 ([11]). Let Λ1 : X ×Z → R, Λ2 : Z ×Y → R and Λ : X ×
Y → R be Borel-measurable functions of two variables satisfying

Λ(x,y) =
∫

Z
Λ1(x,z)Λ2(z,y)dσ(z),

where dσ(z) denotes a sigma-finite measure defined on Z . If one of the func-

tions Λ1 or Λ2 is RR2 and the other T P2, then Λ is RR2 and, otherwise, if both

of the them are RR2 or T P2, then Λ is T P2.

We are now ready to provide main results of this section.

Theorem 3.5. If X(r,n,m̃n) is IHR and mi ≥−1, ∀i, then X(r+1,n,m̃n) is IHR.

Proof. From (5) we have

hX(r+1,n,m̃n)
(x)

hX(r,n,m̃n)
(x)

=
Λ(r,x)

Λ(r+1,x)
gr+1(F(x))
gr(F(x))

[F̄(x)]γr+1(n,m̃n)−γr(n,m̃n), (6)

where

Λ(r,x) =
∞

∑
j=1

1
∏

r
i= j γi(n, m̃n)

[F̄(x)]γ j(n,m̃n)g j(F(x))I{1≤ j≤r},

and IA is the indicator function. Note that [F̄(x)]γ j(n,m̃n) is RR2 in (x, j) ∈ R×
{1, ...,r} and 1/∏

r
i= j γi(n, m̃n) is T P2 in ( j,r) ∈ {1, ...,r}×{1, ...,n} bccause

of mi≥−1. According to Lemma 3.2, g j(F(x)) is T P2 in (x, j)∈R×{1, ...,r}
for m̃n ∈ Rn−1 and I{1≤ j≤r} is T P2 in ( j,r) ∈ {1, ...,r}×{1, ...,n}. Thus, by
Theorem 3.4, it follows that Λ(r,x) is RR2 in (r,x) ∈ {1, ...,n}×R and, hence,
the first fraction in (6) is increasing in x. Again, Lemma 3.2 implies that the
second fraction is increasing in x. Furthermore, the third factor is increasing
bccause of mi≥−1. So, hX(r+1,n,m̃n)

(x) increases because hX(r,n,m̃n)
(x) is increas-

ing.

[11] generalized Theorem 3.4 as follows. If Λ1(x,y,z) > 0 is T P2 in each
pairs of variables when the third variable is held fixed and Λ2(z,y) is T P2,
then Λ(x,y) =

∫
Z Λ1(x,y,z)Λ2(z,y)dσ(z), is T P2. He also note that the result

is valid if Λ2(x,z,y) > 0 is also a function of three variables. But, Λ2(x,z,y)

must be remained T P2 in each pairs of variables. We extend these findings
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while our method of proof is completely different from the rather involved
approach of [11]. Indeed, the idea of our method comes from the Lemma 2.2
of [14] that is often used in establishing the monotonicity of a fraction in which
the numerator and denominator are integrals or summations.

Theorem 3.6. Let Λ1 : X ×Y ×Z → R+, Λ2 : X ×Y ×Z → R+ and

Λ : X ×Y → R+ be Borel-measurable functions satisfying

Λ(x,y) =
∫

Z
Λ1(x,y,z)Λ2(x,y,z)dσ(z), (7)

where dσ(z) denotes a sigma-finite measure defined on Z .

(i) If Λ1 and Λ2 are RR2 in (y,z) and (x,z), and, Λ1 and Λ2 are T P2 in (x,y),

then Λ is T P2 in (x,y);

(ii) (a) If Λ1 and Λ2 are RR2 in (y,z) and (x,y), and, Λ1 and Λ2 are T P2 in

(x,z),

or,

(b) if Λ1 and Λ2 are RR2 in (x,y) and (x,z), and, Λ1 and Λ2 are T P2 in

(y,z), then Λ is RR2 in (x,y).

Proof. We just prove part (i) and part (ii) follows similarly. We denote the
expectation of X with respect to the pdf li, i = 1,2, by Eli[X ]. For x1≤ x2, from
(7) we have

Λ(x2,y2)

Λ(x1,y2)
= El2[ϕ(x1,x2,y2,Z)],

where

ϕ(x1,x2,yi,z) =
Λ1(x2,yi,z)Λ2(x2,yi,z)
Λ1(x1,yi,z)Λ2(x1,yi,z)

, i = 1,2,

and, Z|yi is a random variable with respect to σ and the corresponding pdf

li(z|yi) = c ·Λ1(x1,yi,z)Λ2(x1,yi,z), z ∈ R, i = 1,2,

where c =
[∫

Z Λ1(x1,yi,z)Λ2(x1,yi,z)dσ(z)
]−1

is the normalizing constant.
Since Λ1 and Λ2 are RR2 in (y,z), we have Z|y1 ≥lr Z|y2 and hence Z|y1 ≥st

Z|y2 whenever y1 ≤ y2. Furthermore, Since Λ1 and Λ2 are RR2 in (x,z),
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ϕ(x1,x2,y2,z) is decreasing in z. Thus, because of X ≤st Y ⇔ E[ϕ(X)] ≥ (≤
)E[ϕ(X)] for all decreasing (increasing) functions ϕ (cf. [17]), we have

El2[ϕ(x1,x2,y2,Z)]≥ El1[ϕ(x1,x2,y2,Z)].

Now, since Λ1 and Λ2 are T P2 in (x,y), for y1 ≤ y2 we have

El1[ϕ(x1,x2,y2,Z)]≥ El1[ϕ(x1,x2,y1,Z)] =
Λ(x2,y1)

Λ(x1,y1)
.

As required.

Theorem 3.7. Let X(r,n,m̃n) be IHR.

(i) If mi ≥−1, ∀i, then X(r,n−1,m̃n) is IHR;

(ii) If mi <−1, ∀i, then X(r,n+1,m̃n) is IHR.

Proof. (i) From (5) we have

hX(r,n−1,m̃n)
(x)

hX(r,n,m̃n)
(x)

=
Λ(n,x)

Λ(n−1,x)
[F̄(x)]γr(n−1,m̃n)−γr(n,m̃n),

where

Λ(n,x) =
r

∑
j=1

1
∏

r
i= j γi(n, m̃n)

[F̄(x)]γ j(n,m̃n)g j(F(x)).

It is not difficult to see that [F̄(x)]γ j(n,m̃n) and g j(F(x))
∏

r
i= j γi(n,m̃n)

, as two functions
of three variables (x,n, j), satisfy the conditions on Λ1 and Λ2 in part (i) of
Theorem 3.6. Thus, the rest of the proof follows similar to that of Theorem
3.5.
(ii) This part follows similarly by means of part (ii) of Theorem 3.6.

Remark 3.8. [9] obtained Theorems 3.5 and 3.7 (which also contain previous
findings of OS and record values) for m1 = m2 = ...= mn−1.

At next, we give the following result concerning transmission on parameters
m̃n. The proof is similar to those of above theorems.

Theorem 3.9. Let m′i =(n−i+1)α ′i−(n−i)α ′i+1−1 and m̃′n = {m′1, ...,m′n−1}.
If X(r,n,m̃n) is IHR and mi ≥ m′i, ∀i, then X

(r,n,m̃′n)
is IHR.
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Remark 3.10. The results for the transmission of DHR property is proved sim-
ilarly in the reverse direction.

At the end of this section, we examine the transmission of the DRHR prop-
erty among SOS. Such a study was started by [13] for OS and record values.
Then, [21] generalized these results for GOS under the restriction m1 = m2 =

...= mn−1. For brevity, we omit the proofs.

Theorem 3.11. Let mi ≥ 0, 1≤ i≤ r−1, and γr(n, m̃n)≥ 1, 1≤ r ≤ n. If X is

DRHR, then X(r,n,m̃n) is DRHR.

Theorem 3.12. Let mi ≥ 0, 1 ≤ i ≤ r− 1, γr(n, m̃n) ≥ 1, 1 ≤ r ≤ n, m̃′n =

{m′1, ...,m′n−1} and m′i ≥ mi. If X(r,n,m̃n) is DRHR, then X(r−1,n,m̃n), X(r,n+1,m̃n)

and X
(r,n,m̃′n)

are DRHR.

Remark 3.13. According to Remark 1.16 of [9], the main IHR results of this
section can be used for transmission of the IHRA, NBU (new better than used)
and DMRL (decreasing mean residual life) properties among SOS (and, analo-
gously, for transmission of the DHRA, NWU (new worse than used) and IMRL
(increasing mean residual life) properties in the reverse direction). Also, ac-
cording to Lemma 2.3 of [13], Theorem 3.12 is valid for IUPL (increasing
uncertainty in past life) property.

4 Applications

We note that the results of this paper can be applied for the submodels of SOS
and GOS with unequal mi as well as with equal mi. We give just two examples.

Ordinary record and Pfeifer’s record values. The record values were de-
fined as a model for successive extremes in a sequence of iid random variables.
They are closely connected with the occurrence times of non-homogeneaus
Poisson process, shocks models and minimal repair. Pfeifer’s record model
is based on non-identically distributed random variables and, thus, ordinary
record values are contained in Pfeifer’s model. In this model, the distribution
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of the underlying random variables may change after each record event. A
particular choice of distribution functions

Fi(x) = 1− (1−F(x))βi, x ∈ R, 1≤ i≤ n,

with a cdf F and βi > 0 leads to the model of SOS with parameters αi =
βi

n−i+1

(cf. [9]). According to Theorem 3.5, if the r-th Pfeifer’s record value is IHR
(IHRA, NBU or DMRL), then so does the r+1-th one provided that βi≥ βi+1.
Notice that this condition particularly holds for ordinary record values because
of βi = 1, ∀i.

Sequential (n− r+ 1)-out-of-n system. The r-th SOS can be used to de-
scribe the lifetime of a sequential (n−r+1)-out-of-n system (cf. [5]). Accord-
ing to part (i) of Theorem 3.7, if a sequential (n−r+1)-out-of-n system is IHR
(IHRA, NBU or DMRL), then a sequential parallel system with r components
is also IHR (IHRA, NBU or DMRL) provided that (r− i+1)αi ≥ (r− i)αi+1,
for i = 1, ..,r−1. Note that this system is parallel and would have fewer com-
ponents than the initial system.
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Abstract: Any given system can be represented as a parallel arrangement of
series structures. Motivated by this fact, a new distribution is introduced by
adding two extra parameters to a Weibull distribution, which is twice com-
pounding with geometric and zero-truncated Poisson distributions. The new
distribution can allow various hazard rate curves that compete well with other
alternatives in fitting real data. We derive formal expressions for some of its
reliability functions. The maximum likelihood estimation technique is used
to estimate the model parameters and a simulation study is conducted to in-
vestigate the performance of the maximum likelihood estimates. Finally, an
application of the model with a real dataset is presented to illustrate the use-
fulness of the proposed distribution.
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Studying the lifetime of organisms, devices, structures, and materials is of
major importance in the biological and engineering sciences. On the one hand,
a substantial part of such study is devoted to the mathematical description of
the length of life by a failure distribution. On the other hand, the Weibull
distribution is one of the most popular models for failure times. In recent
years, many authors have proposed generalizations of the Weibull distribution.

Marshall and Olkin [9] proposed adding a parameter to the lifetime distri-
bution through compounding with the geometric distribution. Their suggested
method was motivated by a parallel or series system with a random number of
components. Their work was extended by Adamidis and Loukas [1] when the
two-parameter exponential-geometric (EG) distribution was introduced.

According to Ross [11], any system can be represented either as a series
arrangement of parallel structures or as a parallel arrangement of series struc-
tures. The proposed family is motivated by a system consisting of parallel
components, with each component consists of a series of components, i.e. a
system made of parallel and series structures. The purpose of this paper is to
introduce a new lifetime distribution by compounding a Weibull, geometric,
and zero-truncated Poisson distributions, which is referred to as the Weibull
geometric Poisson (WGP) distribution. The compounding procedure follows
ideas of Marshall and Olkin [9].Applications of the parallel and series systems
can be found in the areas of nuclear power systems (Pham [10]) and modeling
crystal deformation (Eichhorn et al. [5]).

The rest of this paper is organized as follows: In Section 2, a new distri-
bution is obtained by mixing the Weibull distribution and the geometric and
zero-truncated Poisson distributions. In Section 3, some useful properties of
the introduced distribution are discussed. In Section 4, the estimation of pa-
rameters is studied by the maximum likelihood method. A simulation study
is also performed to assess the performance of the maximum likelihood esti-
mators. An illustrative example based on a real dataset is provided in Section
5.
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2 The new distribution

Suppose that a system is made of U parallel components and that the ith com-
ponent is made of Zi components working in series. See Figure 1 for an il-
lustration. Let Xi, j denote the lifetime of the jth component in the ith series
component. Then, the lifetime of the system is

X = max
{

min
{

Xi, j
}Zi

j=1

}U

i=1
.

Figure 1: The system is made up of parallel and series components.

Let Xi, j are independent and identical, Weibull random variables with the shape
parameter α and the scale parameter β has the following probability density
function (pdf):

f (x;α,β ) = αβxα−1e−βxα

; x > 0, α,β > 0.

Let Z1,Z2, . . . ,ZU be independent and identically distributed geometric random
variables with parameter θ and the probability mass function (pmf)

P(z;θ) = (1−θ)θ z−1, z = 1,2, . . . ,

where 0 < θ < 1. Let U be a zero-truncated Poisson random variable with
parameter λ and probability mass function
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P(u;λ ) =
e−λ λ u

(1− e−λ )u!
, u = 1,2, . . . ,

where λ > 0. Assume Xi, j and Z1,Z2, . . . ,ZU are independent random vari-
ables.
It could be shown that the marginal cumulative distribution function (cdf) of
X is

F (x;ξξξ ) = Pr(X ≤ x)

= Pr
(

max
{

min
{

Xi, j
}Zi

j=1

}U

i=1
≤ x
)

=
∞

∑
u=1

Pr
(

min
{

X1, j
}Z1

j=1 ≤ x, . . . ,min
{

Xu, j
}Zu

j=1 ≤ x
) e−λ λ u

(1− e−λ )u!

=
∞

∑
u=1

[
Pr
(

min
{

X1, j
}Z1

j=1 ≤ x
)]u e−λ λ u

(1− e−λ )u!

=
e−λ

(1− e−λ )

∞

∑
u=1

[
1−Pr

(
min

{
X1, j
}Z1

j=1 ≥ x
)]u λ u

u!

=
e−λ

(1− e−λ )

∞

∑
u=1

λ u

u!
[1−Pr(X1,1 ≥ x, . . . ,X1,Z1 ≥ x)]u

=
e−λ

(1− e−λ )

∞

∑
u=1

λ u

u!

{
1−

∞

∑
z=1

[
e−βxα

]z
(1−θ)θ z−1

}u

=
e−λ

(1− e−λ )

∞

∑
u=1

λ u

u!

{
1− 1−θ

θ

∞

∑
z=1

[
θe−βxα

]z
}u

=
e−λ

(1− e−λ )

∞

∑
u=1

λ u

u!

{
1− e−βxα

1−θe−βxα

}u

=
(

eλ −1
)−1

(
exp

{
λ

1− e−βxα

1−θe−βxα

}
−1

)
, (1)

for x > 0 where ξξξ = (α,β ,θ ,λ ). The F(x) function in (1) is the cdf of a
new distribution here named WGP. The WG distribution of Barreto-Souza et
al. [3] is a particular case of the WGP distribution, obtained when N = 1
is degenerate. The CWP distribution of Mahmoudi and Sepahdar [8] is the
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particular case of the WGP distribution, obtained when U = 1.

3 Some useful properties

Let X be a WGP random variable with cdf (1). The corresponding pdf, survival
function, hazard rate (hrf) function, and quantile function are

f (x;ξξξ ) =
αβλ (1−θ)xα−1e−βxα(
1− e−λ

){
1−θe−βxα

}2 exp

{
−λ (1−θ)e−βxα

1−θe−βxα

}
,

S (x;ξξξ ) =
(

1− e−λ

)−1
(

1− exp

{
−λ (1−θ)e−βxα

1−θe−βxα

})
, (2)

h(x;ξξξ ) =
αβλ (1−θ)xα−1e−βxα{

1−θe−βxα
}2

(
exp

{
λ (1−θ)e−βxα

1−θe−βxα

}
−1

)−1

,

and

Q(u;ξξξ ) =− 1
β

log

{
1− 1

λ
log
(
1+u

[
eλ −1

])
1− θ

λ
log
(
1+u

[
eλ −1

])} , (3)

respectively. Figure 2 displays the density and hazard rate functions of the
WGP distribution for some selected parameter values.
In particular,

Median(X)− 1
β

log

{
1− 1

λ
log
(
1+0.5

[
eλ −1

])
1− θ

λ
log
(
1+0.5

[
eλ −1

])} .

Finally, If U is a uniform[0,1] random variable, then Q(U) is a WGP random
variable.

Let X be a WGP random variable with cdf (1). Using the concept of power
series and some other mathematical expansions, we derived a linear represen-
tation for the survival function of the WPG distribution. Since
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Figure 2: Graphs of the pdf (first row) and hrf (second row) of the WGP distribution for selected values of the

parameters.

(
y

1−θy

) j

=
∞

∑
k=0

(−1)k
(
− j
k

)
θ

ky j+k,

then equation (2) can be expressed as

S (x;ξξξ ) =
∞

∑
j=0

∞

∑
k=0

c j,k (θ ,λ )e−( j+k)βxα

, (4)

where

c j,k (θ ,λ ) =

(
− j
k

)
(−1)k+ j−1

λ jθ k(1−θ) j

j!
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Equation (4) is the main result of this section. So, several mathematical proper-
ties of the proposed family such as moments and moment generating function
can be obtained by using this expansion. The formula for the rth moment of X

is obtained from (4) as

E [X r] = r
∫

∞

0
xr−1S(x)dx =

rΓ
( r

α

)
αβ

r
α

∞

∑
j=0

∞

∑
k=0

c j,k (θ ,λ )

( j+ k)
r
α

.

4 Estimation and Simulation

In this section, we discuss the estimation of the parameters of the WGP distri-
bution. Suppose X = (X1,X2, . . . ,Xn) is a random sample from the WGP distri-
bution with observed values x=(x1,x2, . . . ,xn) and parameters ξξξ =(α,β ,θ ,λ ).
The log-likelihood function based on the observed sample is

`(ξξξ | x) = n log
[

αβλ (1−θ)

1− e−λ

]
+(α−1)

n

∑
i=1

log [xi]−β

n

∑
i=1

xα
i

−2
n

∑
i=1

log
[
1−θe−βxα

i

]
−λ (1−θ)

n

∑
i=1

e−βxα
i

1−θe−βxα
i
. (5)

The maximum likelihood estimate (MLE) of ξξξ called ξ̂ξξ should satisfy the fol-
lowing equation Un (ξξξ ) = (∂`/∂α,∂`/∂β ,∂`/∂θ ,∂`/∂λ ) = 0. The solution
of this nonlinear system of equations has no closed-form. To solve this equa-
tion, it is usually more convenient to use nonlinear optimization algorithms
such as the quasi-Newton algorithm to maximize the log-likelihood function
numerically. In the application section, the MLEs were obtained by directly
maximizing (5), concerning to the parameters. The optim routine in R was
used for maximization.

We also conducted a simulation study to assess the performance of the maxi-
mum likelihood estimation procedure for estimating the WGP distribution pa-
rameters using (3). Samples of sizes 10, 12, 14, . . . , 200 are generated for
parameter vector ξξξ = (1,2,0.5,0.9) from WGP distribution.
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Figure 3: From top to bottom and from left to right: MSEα(n),MSEβ (n),MSEθ (n),MSEλ (n).

We repeated the simulation k = 1000 times and calculated the MLEs and the
bias and mean squared error (MSE) of the parameter estimates. The empirical
results are given in Figure 3 indicates that the maximum likelihood estimators
carry out well for estimating the parameters of the WGP model. According
to Figure 3, it can be concluded that as the sample size n increases, the MSEs
decay toward zero. We have presented results for only one choice for ξξξ =

(1,2,0.5,0.9). However, the results were similar for a wide range of other
choices.
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5 Data Application

In this section, we fit the WGP distribution to a real dataset using maximum
likelihood method. First, we give the MLEs and the corresponding standard
errors of the model parameters and the values of the Akaike Information Cri-
terion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Infor-
mation Criterion (BIC), and Kolmogorov-Smirnov (K-S) statistics. The lower
the values of these criteria, the better the fit. Finally, we provide the histogram
of estimated pdfs for the dataset to visualize the fitted models.

The dataset consists of the strength of 1.5 cm glass fibers, measured at the
National physical laboratory, England (see Smith and Naylor [12]). Table 1
gives some descriptive statistics for this dataset.

Table 1: Descriptive statistics for the glass fibers dataset.

n Mean Q1 Median Q3 Mode Variance Skewness Kurtosis Min Max

63 1.507 1.375 1.59 1.685 1.61 0.105 -0.90 3.92 0.55 2.24

Larger parameter space of the distribution provides a better fit. It can be
expected to provide. So, we extended the parameter space of θ to (−∞,1), the
stated pdfs remain valid pdfs over the extended space. We also extended the
parameter space of λ for the zero-truncated Poisson distribution to (−∞,∞),
the WGP pdf remains a valid pdf over the extended space. For more details,
see Goldoust et al. [7].

The MLEs of the parameters are computed and the goodness-of-fit statistics
for these models are compared with fit of the popular exponential, Weibull,
Odd Weibull (Cooray [4]), beta Weibull (BW) (Famoye et al. [6]), and beta
generalized exponential (BGE) (Barreto-Souza et al. [2]) distributions. The
MLEs, log-likelihood value, the corresponding standard errors, the Kolmogorov-
Smirnov statistic, AIC, AICc, and BIC values are shown in Table 2. We can
see that the largest log-likelihood value, the smallest AIC, AICc, and BIC val-
ues are obtained for the WGP model and it shows that the WGP distribution
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gives the best fit with respect to all indices.

Table 2: Estimates and goodness-of-fit measures for the glass fibers dataset.

Model Estimated parameters log(`) K-S AIC AICc BIC

Exponential 0.6636 -88.83 0.632 179.26 179.73 181.80

SE (0.0836)

Weibull 5.7807, 0.0597 -15.21 0.144 34.41 34.57 38.70

SE (0.9532, 0.3284)

OW 6.0258, 0.0539, 0.9438 -15.187 0.155 36.374 37.064 42.803

SE (1.3333, 0.0331, 0.2667)

BW 7.0138, 0.5533, 0.4498, 0.0499 -13.044 0.118 34.088 35.141 42.661

SE (0.8896, 0.6459, 0.1810, 0.0464)

BGE 22.6124, 0.9227, 0.4125, 93.4655 -15.599 0.158 39.198 40.251 47.771

SE (22.8153, 0.5135, 0.3152, 116.6665)

WGP 3.2061, 0.6888, -11.4004, 0.5528 -12.029 0.105 30.058 30.465 36.487

SE (0.9476, 0.5627, 27.2243, 3.2966)

The density graphs for the fit of the distributions for the glass fibers dataset
are shown in Figure 4. The fitted pdf of the WGP distribution captures the
observed histograms better than others. Hence, we can say that the WGP
distribution provides the best fit for at least a real dataset.
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Abstract: In order to gather the information about the lifetime distribution
of a product, a standard life testing method at normal operating conditions is
not practical when the product has an extremely long lifespan. Accelerated
life testing solves this difficult issue by subjecting the test units at higher stress
levels than normal for quicker and more failure data. The lifetime at the design
stress is then estimated through extrapolation using an appropriate regression
model. Although continuous monitoring of the exact failure times is an ideal
mode, the exact failure times of test units may not be available in practice
due to technical limitations and/or budgetary constraints, but only the failure
counts are collected at certain time points during the test (i.e., interval mon-
itoring). In this work, the optimal design of a simple step-stress accelerated
life test with interval monitoring under progressive Type-I censoring is studied
for assessing the reliability characteristics. The nature of the optimal stress
duration is demonstrated under various design criteria. These optimal designs
are investigated in detail for exponential lifetimes with a single stress variable,
and the effect of the intermediate censoring proportion on the optimal design
is presented.

Keywords: Accelerated life tests, Design of experiment, Interval monitoring,
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Progressive Type-I censoring, Step-stress loading.

1 Introduction

With ever increasing reliability and substantially long life-spans of products, it
is often very difficult for standard life testing methods under normal operating
conditions to obtain sufficient information about the failure time distribution
of the products. This practical difficulty is overcome by accelerated life tests
(ALT). By subjecting test units to higher stress levels than normal, the ALT
collects more failure data in a shorter period of time. By applying more severe
stresses, ALT collects information on the parameters of lifetime distributions
more quickly. The lifetime at the normal operating stress can be estimated
through extrapolation using an appropriate stress-response regression model.
As a special mode of ALT, a simple (step-up) step-stress test implements an
increase of the stress level at a prefixed time point ∆ during the test until the
termination time τ . In the past decades, the inference and design optimiza-
tion for the step-stress ALT have attracted great attention in the reliability and
engineering literature; see [3], [2] for example.

Furthermore, due to time and resource constraints, censored sampling is
usually necessary in practice, and in particular, a generalized censoring scheme
known as progressive Type-I censoring allows functional test units to be with-
drawn successively from the experiment at some prefixed non-terminal time
points. Those withdrawn unfailed units can be used in other tests in the same
or at a different facility. This work formulates the optimization of a simple
step-stress ALT under progressive Type-I censoring. It is assumed here that
the lifetimes of the test units are from an exponential distribution at each stress
level, and a log-linear relationship is held between the stress level and the mean
lifetime parameter. To explain the effect of increasing stress, the accelerated
failure time (AFT) model is also adopted. Using three different design criteria,
including D-optimality, C-optimality and A-optimality, the optimal design is
investigated in detail with a single stress variable, and the effect of the inter-
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mediate censoring proportion on the optimal design is numerically studied.
Due to technical limitations and budgetary constraints, it is also considered

that the exact failure times of test units may not be observable (i.e., interval
monitoring). The interval monitoring occurs when only the failure counts are
collected at certain time points during the test. Although continuous moni-
toring of the exact failure times is ideal, the exact failure times of test units
may not be available in practice due to technical limitations and/or budgetary
constraints.

The rest of the article is structured as follows. Section 2 presents the model
description for a simple step-stress ALT under progressive Type-I censoring.
The (expected) Fisher information matrix of the regression parameters is de-
rived in Section 3. Based on the Fisher information obtained in Section 4,
various optimality criteria are defined. Section 5 provides the results of a nu-
merical study to investigate the behaviors of the optimal step durations. Sec-
tion 6 is devoted to the concluding remarks.

2 Model descriptions and MLE

Let s(t) be the given stress loading (a deterministic function of time) for ALT.
Also, let sH be an upper bound of stress level and sU be the normal use-stress
level. The standardized stress loading is then defined as

x(t) =
s(t)− sU

sH− sU
, t ≥ 0

so that the range of x(t) is [0,1]. Now, let us define 0 = x0 < x1 < x2 ≤ 1 to
be the ordered standardized stress levels to be used in the test. It is further
assumed that under any stress level xi, the lifetime of a test unit follows an
exponential distribution whose probability density function (PDF) and cumu-
lative distribution function (CDF) are

fi(t) =
1
θi

e−
t
θi , 0 < t < ∞, (1)

Fi(t) = 1− e−
t
θi , 0 < t < ∞, (2)
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respectively. Also, it is assumed that under any stress level xi, the mean time
to failure (MTTF) of a test unit, θi, is a log-linear function of stress given by

log(θi) = α +βxi, (3)

where the regression parameters α and β need to be estimated. The log-linear
relationship is a commonly used and well-studied model for the accelerated
exponential distribution model. Along with its simplicity, the log-linear link
represents several significant life-stress relationships built from physical prin-
ciples such as Arrhenius, inverse power law, Eyring, temperature-humidity,
and temperature-non-thermal; see Miller and Nelson [3].

Total N1 = n test units are initially placed at stress level x1 and tested until
time ∆ at which point c1 live items are arbitrarily withdrawn from the test and
the stress is changed to x2. The test is then continued on N2 = n− n1− c1

surviving units until time τ , at which all the c2 = N2−n2 = n−n1−n2−c1 re-
maining items are withdrawn, thereby terminating the test. Now, let n1 denote
the number of units failed at stress level x1 in time interval [0,∆) while n2 de-
notes the number of units failed at x2 in [∆,τ). For the continuous monitoring,
we also have failure times of failed units. It is noted that these exact failure
times are not available under the interval monitoring. Furthermore, let c1 be
the number of units censored at time ∆. Under this setup, a simple step-stress
ALT under progressive Type-I censoring proceeds as follows.

Since the stress-loading is non-constant for the step-stress ALT, an addi-
tional model to explain the effect of changing stress is required. In reliability
engineering, the AFT model, also referred to as the additive accumulative dam-
age model, is often appropriate as it generalizes several well-known models for
the exponential distribution, including the basic (linear) cumulative exposure
model. Under the AFT model along with (1) and (9), the PDF and CDF of a
test unit for the simple step-stress ALT are

f (t) =

{
f1(t), 0≤ t < ∆,

S1(∆) f2(t−∆), ∆≤ t < τ.
(4)
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F(t) =

{
1−S1(t), 0≤ t < ∆,

1−S1(∆)S2(t−∆), ∆≤ t < τ.
(5)

respectively. Now, based on (4) and (5), the likelihood and MLE of the regres-
sion parameters α and β are derived in the following.

The joint probability mass function (JPMF) of n = (n1,n2) is obtained by
using (5) as

fJ(n) =

(
n

n1

)(
N2

n2

)[ 2

∏
i=1

(1− exp(
∆i

θi
))ni
]

exp(−
2

∑
i=1

∆i

θi
(Ni−ni)) (6)

where ∆1 = ∆ and ∆2 = τ −∆. With (6) and the log-linear link given in (3),
the log-likelihood function of (α,β ) is written as

`=
2

∑
i=1

ni log
(

1− e−∆i exp [−(α+βxi)]
)
−

2

∑
i=1

∆i(Ni−ni)exp [−(α +βxi)]. (7)

Upon differentiating (7) with respect to α and β , the MLE α̂ and β̂ can be
obtained as simultaneous solutions to the following two equations:

2

∑
i=1

ni∆i
exp(− (α +βxi)−∆ie−(α+βxi))

1− e−∆i exp [−(α+βxi)]
=

2

∑
i=1

∆i(Ni−ni)exp [−(α +βxi)],

2

∑
i=1

nixi∆i
exp(− (α +βxi)−∆ie−(α+βxi))

1− e−∆i exp [−(α+βxi)]
=

2

∑
i=1

xi∆i(Ni−ni)exp [−(α +βxi)].

The MLE α̂ and β̂ do not exhibit explicit forms, and solving this series of
equations requires a computational technique. Also, statistical inferences with
these MLE are based on the asymptotic result that (α̂, β̂ ) follows an approxi-
mate bivariate normal distribution with mean (α,β ) and variance-covariance
matrix I−1(α,β ).

3 Censoring scheme and Fisher information matrix

Prefixing c1 bears an intrinsic mathematical lapse for a simple step-stress ALT
under progressive Type-I censoring since that it is possible that all the units
fail before reaching the stress level x2, resulting in an early termination of the
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ALT and failing to realize c1. For this reason, Gouno et al. [1], for exam-
ple, assumed a large sample size, small global censoring proportions, and a
small number of stress levels for an approximate/asymptotic analysis of pro-
gressively Type-I censored data so that the prefixed number of units could be
removed at the end of each stage. A usual life test, however, runs on a small
sample size and there might be severe censoring due to budgetary constraints
and/or facility requirements. In such situations, the assumption of a large sam-
ple is violated and consequently, the progressive censoring scheme needs to be
modified to ensure its feasibility. An easy practical modification for a simple
step-stress ALT is to decide on the fixed proportion 0 ≤ π∗1 < 1 of surviving
items to be censored at ∆. Since all the remaining units withdraw from the test
at τ , one could define π∗2 = 1. Then, the actual number of items censored at ∆

is determined by c1 = (n−n1)π
∗
1 , where π∗1 is the fixed intermediate censoring

proportion. This modification mathematically allows the ALT to not terminate
before reaching the stress level x2. Since the number of surviving units at ∆

before censoring takes place is random, c1 is essentially a random quantity
under the suggested censoring mode.

Then, based on the log-likelihoods and (7) obtained in the preceding section,
the expected Fisher information matrix I(α,β ) is derived in a common form
as

I(α,β ) = n


2

∑
i=1

Ai ∑
2
i=1 Aixi

2

∑
i=1

Aixi ∑
2
i=1 Aix2

i

 , (8)

where

A1 =
∆2

θ 2
1

S1(∆)

F1(∆)
,

A2 =
(τ−∆)2

θ 2
2

S2(τ−∆)

F2(τ−∆)
S1(∆)(1−π

∗
1). (9)
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By utilizing the distributional properties:

• n1 has a binomial distribution with parameters n and F1(∆1);

• n2 given N2 has a binomial distribution with parameters N2 and F2(∆2) =
F(τ)−F(∆)

1−F(∆) .

4 Design criteria and optimal step duration

A number of design criteria were considered in this study for determining the
optimal step duration ∆∗. These objective functions are based on the Fisher
information matrix I(α,β ) derived in the preceding section.

4.1 D-optimality

Design optimality criterion often used in planning ALT is based on the re-
ciprocal of the determinant of the Fisher information matrix, or equivalently,
the determinant of the asymptotic variance-covariance matrix. The overall
volume of the Wald-type joint confidence region of (α,β ) is proportional to
|I−1(α,β )|1/2 at a fixed level of confidence. In other words, it is inversely
proportional to |I(α,β )|1/2, the square root of the determinant of I(α,β ) .
Accordingly, a larger value of |I(α,β )| would correspond to a smaller asymp-
totic joint confidence ellipsoid of (α,β ) and thus a higher joint precision of
the estimators of α and β . Based on this, an objective function is defined as

φD(∆) = n2 |I−1(α,β )|, (10)

and the D-optimal step duration ∆∗D is obtained by minimizing (10) for the
maximal joint precision of (α̂, β̂ ).

4.2 C-optimality

ALT often aims to estimate the parameters of interest with maximum precision
and minimum variability possible. For the step-stress ALT, such a parameter
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of interest is θ0, the MTTF at the normal operating stress level x0. Based on
(8), an objective function to serve this purpose is defined as

φC(∆) = nAVar(log θ̂0) = nAVar(α̂ + β̂x0) = n(1 0)I−1(α,β )(1 0)′. (11)

The C-optimal step duration ∆∗C is the one that minimizes the objective func-
tion in (11).

4.3 A-optimality

Another design optimality criterion considered in this study is based on the
trace of the first-order approximation of the variance-covariance matrix of the
MLE, or the sum of the diagonal elements of I−1(α,β ). This A-optimality
criterion provides an overall measure of the average variance of the parameter
estimates and gives the sum of the eigenvalues of the inverse of the Fisher
information matrix. The A-optimal step duration ∆∗A minimizes the objective
function defined as

φA(∆) = ntr(I−1(α,β )). (12)

5 Comparative numerical study

A computational study was conducted to investigate the optimal step durations
for a progressively Type-I censored simple step-stress ALT under various de-
sign criteria discussed in Section 4, and the results are presented in this section.
The behaviors of these optimal stress change points were also evaluated as a
function of varying parameters such as the sample size, total test duration,
MTTF, and the degree of censoring. For an illustrative purpose, standardized
equi-spaced stress levels xi = x0+ id were considered with the use-stress level
x0 = 0 and the stress increment d = 0.25.

Upon this layout, the results of the D-optimality and C-optimality criteria
are independent of the choice of d while A-optimality criterion is dependent
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on it in varying degrees. An extensive and comprehensive numerical study
was conducted with exhaustive combinations of various parameter values. In
contrast to the work of [1], which determined the optimal step-stress ALT with
uniform step durations, our design optimization is performed with respect to
flexible, non-uniform durations, for which the total test duration τ is a critical
parameter to define a valid search region. Thus, rather than tabulating specific
values, the computational results provided here are intended to visualize infor-
mation about the way the optimal step duration to the total test duration ∆∗/τ

changes as a function of the test duration τ and other relevant parameters.

Figure 1 presents the optimal step durations ∆∗ with respect to the total test
durations τ under each design criterion with θ0 = 1000, θ1 = 300, θ2 = 90 and
10% intermediate censoring over the remaining test units at the end of the first
stress level. It is observed that ∆∗ with respect to τ exhibits similar behaviors
across different design criteria. The ratio ∆∗/τ is convex in τ , meaning that
there exists the minimal ratio with respect to τ and a larger proportion of the
test duration is assigned to the first stress level as τ increases. It is interesting to
note that the results of the A-optimality and the C-optimality are very similar
in terms of the optimal step duration and the corresponding optimum. When
the total test duration τ is very short (i:e:, τ → 0), it is observed that, the
C-optimal duration of the first stress level is the largest, followed by the A-
optimal duration, then by the D-optimal duration. In particular, the D-optimal
proportion ∆∗/τ always starts from 50%.

As shown in Figure 2, for higher intermediate censoring proportion π∗1 , the
behaviors of the optimal step durations ∆∗ with respect to the total test duration
τ do not seem affected much.

Figures 3 and 4 present the corresponding values of the optima φ(∆∗) of
each objective function, achieved by the optimal step durations ∆∗ presented
in Figures 1 and 2. These optima are plotted as a function of the total test
duration τ . The optima of each design criterion decrease at first and then in-
crease as τ gets longer. This convexity indicates that if the total test duration
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is longer than necessary, it actually hurts the design, producing a sub-optimal
step-stress ALT. It means that the total test duration τ is an important dimen-
sion to consider when constructing the optimal step-stress ALT under the in-
terval monitoring.

6 Conclusion

This work investigates the design optimization of a simple step-stress ALT
under progressive Type-I censoring with non-uniform step durations. The in-
terval monitoring was considered. Using a log-linear relationship between the
MTTF parameter and the (transformed) stress level along with the AFT model
for the effect of increasing stress levels, the Fisher information was derived
for the model parameters. Based on the Fisher information matrix, the objec-
tive functions were then defined under several design criteria, including the
D-optimality, C-optimality and A-optimality. For exponential failure times,
the effects of the intermediate censoring proportion π∗1 and the test duration τ

on the relative design efficiencies were also explored.
In this work, the optimal designs were formulated by implementing unequal

or flexible durations at different stress levels. It is of practical interest to ex-
amine if the optimal designs under time constraints utilize all the stress levels
when more than two levels are available. Our preliminary analysis reveals
that the optimal step-stress ALT may implement more than two stress levels
depending on the total test duration τ .

Figure 1: Optimal step durations ∆∗ with respect to the total test durations τ for progressively Type-I censored simple step-stress ALT with

π∗1 = 10%.
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Figure 2: Optimal step durations ∆∗ with respect to the total test durations τ for progressively Type-I censored simple step-stress ALT with

π∗1 = 20%.

Figure 3: Corresponding optima φ(∆∗) of the objective functions with respect to the total test durations τ for progressively Type-I censored

simple step-stress ALT with π∗1 = 10%.

Figure 4: Corresponding optima φ(∆∗) of the objective functions with respect to the total test durations τ for progressively Type-I censored

simple step-stress ALT with π∗1 = 20%.

References

[1] Gouno, E., Sen, A. and Balakrishnan, N. (2004), Optimal step-stress test
under progressive Type-I censoring. IEEE Transactions on Reliability,
53(4), 383–393.

[2] Han, D. and Bai, T. (2019). On the maximum likelihood estimation for



The 7th Seminar on Reliability Theory and its Applications 137

progressively censored lifetimes from constant-stress and step-stress ac-
celerated tests. Electronic Journal of Applied Statistical Analysis, 12(2),
392–404.

[3] Miller, R. and Nelson, W. (1983), Optimum simple step-stress plans for
accelerated life testing. IEEE Transactions on Reliability, 32(1), 59–65.



The 7th Seminar on Reliability Theory and its Applications

Reliability Evaluation of Weighted Systems Consisting of Multiple Types of
Components

Hamdan, K.1, Tavangar, M.11, and Asadi, M.1,22

1 Department of Statistics, Faculty of Mathematics and Statistics, University
of Isfahan, Isfahan 81744, Iran

2 School of Mathematics, Institute for Research in Fundamental Sciences
(IPM), P.O. Box: 19395-5746, Tehran, Iran

Abstract: In the present paper, a weighted k-out-of n system with M ≥ 2
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Reliability function of the system and other reliability indices are obtained
based on the proposed extended survival signature. Numerical examples and
some applications are posted to illustrate the model.
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1 Introduction

Weighted systems and specially weighted k-out-of-n systems have captured
the attention of many researchers in recent years because of their wide range
of applications. A system with n components is said to have an ordinary k-
out-of-n structure, if it operates as long as at least k components out of the n

components operate. In the n-component weighted system, components will
1Tavangar, M.: m.tavangar@sci.ui.ac.ir
2Asadi, M.: m.asadi@sci.ui.ac.ir

138



The 7th Seminar on Reliability Theory and its Applications 139

be supposed to have different loads or capacities, wi, say, i = 1,2, ...,n. A
weighted k-out-of-n system fails whenever the accumulated weight of the func-
tioning components becomes less than a predetermined threshold k, where
(minwi ≤ k≤∑

n
i=1 wi), i = 1,2, ...,n. Weighted k-out-of-n systems were intro-

duced for the first time by Wu and Chen[1]. Samaniego and Shaked[7] studied
a more general case in which the weights and the threshold of the system were
allowed to take on any positive values. Eryilmaz and Sarikaya[5] study re-
liability analyses for weighted systems with n components classified in two
groups according to their weights. Weighted systems have many applications
in real-life. For example, oil transmission system consists of several pipelines
with different diameters (capacities) could be treated as a weighted system
with pipes considered as components. On the other hand, the vast majority
of real-life systems contain components not only with different capacities but
also from different types. In this case, the system contains n components,
each component has its own capacity (weight) and the components are se-
lected from M different types M≥ 2. Each type has ni of components, whereas

∑
n
i=1 ni = n. In the case of M = 1 and n1 = n, we get the typical weighted sys-

tem with identical components. Also, as a special case of M = n and ni = 1,
for all i = 1,2, ...,M, we have a system with nonidentical components. Many
examples could be mentioned for such systems. Wind turbine plants with dif-
ferent generating capacity in power generation systems are good examples for
weighted k-out-of-n systems, Eryilmaz[9], Louie and Sloughter[8]. When the
turbines in the same plant are of the same model, whereas different models se-
lected for different plants, then this system could be classified as a multi-type
weighted system. Although there are many examples of such systems in real
life, there is a lack of studies of these systems in the literature. For example,
Eryilmaz and Sarikaya[5] studied reliability properties of a special case when
a weighted system consists of two different types of components with a fixed
weight and a common reliability function for all components in each type.
Salehi et al [4] studied the reliability evaluation of a system with two types of
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components in the case that a random number of components from one type
are chosen.

In system reliability, the concept of signature vector introduced by Samaneigo[2]
is a very useful tool that has been widely used for the reliability evaluation of
technical systems. A system with n component has a signature vector of the
form p = (p1, p2, ..., pn), where the element pi refers to the probability that
the failure of the ith ordered component leads to the failure of the whole sys-
tem. If we denote the system lifetime by Ts and the lifetime of components as
X1,X2, ...,Xn, and X1:n,X2:n, ...,Xn:n the ordered lifetimes of components, then
pi = P(Ts = Xi:n). If the components of the system are supposed to beindepen-
dent and identically distributed (iid) with a common cumulative distribution
function F , it will be easy to verify that

Fs(t) := P(Ts > t) =
n

∑
i=1

piP(Xi:n ≥ t) =
n

∑
i=1

piF i:n(t).

It is obvious from the above expression that the structure of the system is
fully taken into account, whereas it is completely free of distribution. Signa-
ture vector for the case of weighted systems was also studied in [3]. However,
the weakness of the signature vector is the restriction on the components to
be from a single type. This limitation makes it inapplicable for most practical
systems like systems with multiple types of components. That is why the con-
cept of survival signature introduced to fill this void in such systems. Coolen
and Coolen-Maturi [10] introduced this concept to study systems with M ≥ 2
types of components. Indeed, survival signature for a system with M different
types of components is a multivariate function φ(l1, l2, ..., lM) which denotes
the probability that the system is functioning with exactly l1 components from
the first type, l2 components from the second type, ... and lM components from
the Mth type. In the present paper, we will generalize this concept for the case
of weighted k-out-of-n systems with multiple types of components.

The rest of this paper is organized as follows. In Section 2, we introduce the
concept of extended survival signature for the weighted systems and evaluating
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the reliability functions of such systems. Section 3 is devoted to applications
and illustrative examples.

2 Extended survival signature and reliability evaluation

Consider a weighted k-out-of n system with n components. Suppose that the
components are selected from 2≤M≤ n different types. Type i contains a cer-
tain number of components, ni, say, where n = ∑

M
i=1 ni. All components in the

same type are supposed to be iid with a cumulative distribution function Fi(t).
Furthermore, completely independence is also supposed between the lifetimes
of different types. Let w(i)

j denote the weight of the component j from the ith
type of the system, i = 1,2, ...,M, j = 1,2, ...,ni. Therefore the vector w in the
form w = (w(1)

1 , ...,w(1)
n1 ,w

(2)
1 , ...,w(2)

n2 , ...,w
(M)
1 , ...,w(M)

nM ) could be regarded as
the weights vector for the system. Furthermore, at any given time instant t, the
vector ε(t) = (ε

(1)
1 (t), ...,ε(1)n1 (t),ε(2)1 , ...,ε

(2)
n2 (t), ...,ε(M)

1 , ...,ε
(M)
nM (t)) will rep-

resent the state vector of the system at time t, where ε
(i)
j (t) indicates the status

of the component j from type i, i = 1,2, ...,M, j = 1,2, ...,ni at time t, i.e.,
ε
(i)
j (t) = 1 in the functioning case and ε

(i)
j (t) = 0, otherwise. In what follows,

we will consider a classic failure model of the multi-type weighted k-out-of-n
system, i.e, the system works if the total weight of the working components at
time t is greater than or equal to the predetermined threshold k. If Φ(ε(t)) is
the structure function and denotes the system state at t, then

Φ(ε(t)) =

{
1, if ∑

M
i=1 ∑

ni
j=1 w(i)

j I(ε(i)j (t) = 1)≥ k

0, otherwise,

where I() denotes the indicator function. At a fixed time instant t, if we denote
the system lifetime by Ts, we are interested in obtaining the reliability func-
tion representation of such system P(Ts > t), using the concept of the extended
survival signature. Let φ(l1, l2, ..., lM), denote the probability that the system
functions given that exactly l1 components from the first type, exactly l2 com-
ponents from the second type, ... and exactly lM components from the M-th
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type, where, 0 ≤ li ≤ ni. Indeed, this function is called the extended survival

signature with M variables (dimensions). In our study, we restrict our attention
to the class of coherent systems, for which φ(l1, l2, ..., lM) is a non-decreasing
function of li, i = 1,2, ...,M and φ(0,0, ...,0) = 1− φ(1,1, ...,1) = 0. Gen-
erally, this function will be computed for (n1 + 1)× (n2 + 1)× ...× (nM + 1)
permutations of elements. In other words, there is

(ni
li

)
number of ways to

select li functioning components from the type i to set the respective state vec-
tor vi

li, i = 1,2, ...,M, where vi
li = (vi,1,vi,2, ...,vi,ni) for which ∑

ni
j=1 vi, j = li,

0 ≤ li ≤ ni, where, vi, j = 1, if the jth component from the type i works and
vi, j = 0 otherwise. Let V i

li
denote the set of all state vectors vi

li for components
of type i. Furthermore, let Vl1,l2,...,lM denote the set of state vectors of the form
(v1,1, ...,v1,n1,v2,1, ...,v2,n2,vM,1, ...,vM,nM) for the whole system with exactly l1
components from the first type, l2 components from the second type, ... and lM
components from the M-th type. In other words, Vl1,l2,...,lM contains all vectors
of the size n that fit (∑M

i=1 ∑
ni
j=1 vi, j = l1+ l2+ ...+ lM). It is clear that Vl1,l2,...,lM

contains ∏
M
i=1
(ni

li

)
number of different (vectors) as a different possible cases.

Due to the iid assumption for the lifetimes of the components of the same
type, all these state vectors are equally likely to occur, hence

φ(l1, l2, ..., lM) =
∑ε∈Vl1,l2,...,lM

Φ(ε)

∏
M
i=1
(ni

li

) . (1)

It is clear that ∑ε∈Vl1,l2,...,lM
Φ(ε), is actually the number of permutations with

exactly l1 functioning components from the first type, l2 functioning compo-
nents from the second type, ..., and lM functioning components from the M-th
type for which the system is in the up state. In another expression, the vectors
in the set Vl1,l2,...,lM for which the system is in the up state, are somewhat similar
to what so-called path vectors of the system, whereas a set of components in a
system is called a path set if functioning of all components in this set implies
that the system itself is functioning.

In the type i, let Ci(t), denote the number of the functioning components at
t. According to the iid assumption of the components in the same type, we



The 7th Seminar on Reliability Theory and its Applications 143

have
P(Ci(t) = li) =

(
ni

li

)
F li

i (t)F
ni−li
i (t)

On the other hand, obtaining the reliability function of the system at some
time instant t, requires knowing the previous probability structure for all types
at the same time t. That is, obtaining the structure P(

⋂
i=1,2,...,M Ci(t) = li)

which denotes the probability that the number of working components in the
first, second, ..., and M-th type are l1, l2, ... and lM respectively. From the
independency between the different types of components, we have

P(
⋂

i=1,2,...,M

{Ci(t) = li)}= P(C1(t) = l1,C2(t) = l2, ...,CM(t) = lM)

=
M

∏
i=1

P(Ci(t) = li)

=
M

∏
i=1

(
ni

li

)
F li

i (t)F
ni−li
i (t). (2)

Hence, one can obtain a survival-based reliability function representation of
the system. Using total probability law, we have

P(Ts > t) =
n1

∑
l1=0

n2

∑
l2=0

...
nM

∑
lM=0

φ(l1, l2, ..., lM)×P(C1(t) = l1,

C2(t) = l2, ...,CM(t) = lM).

Using (2) we have

P(Ts > t) =
n1

∑
l1=0

n2

∑
l2=0

...
nM

∑
lM=0

φ(l1, l2, ..., lM)×
M

∏
i=1

(
ni

li

)
F li

i (t)F
ni−li
i (t). (3)

3 Applications and illustrative examples

Wind plants are important renewable resource systems that operate to convert
a portion of the kinetic energy that exists in a mass of moving air to electrical
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energy by way of an electric generator. A wind plant consists of a number of
wind turbines, and in general, the power delivered by a wind plant Pi is the
sum of the real power produced by its constituent wind turbines, Louie and
Sloughter(2014)

Pi =
ni

∑
j=1

PWT, j−PL,i,

where ni is the number of wind turbines in the wind plant i, PWT, j is the real
power released by the jth wind turbine and PL,i is the ith wind plants collector
system losses at the current operating state.

As it is well known, there are several factors that can influence the progress
of generating energy. Wind speed may be the most important factor in the
released energy of a wind turbine. Accordingly, two turbines located in two
different regions (with considerable divergence), may have different outcomes
electrical energy due to the difference wind speeds between those regions.
Typically, a wind power generation system consists of one or more wind plants,
each plant may also contain more than one turbine. On the other hand, Louie
and Sloughter deduced that the power delivered by a wind plant is stochastic
and primarily depends on wind speed which treated as a random variable. They
also showed that wind speed data can be modeled using the two-parameter
Weibull distribution. According to this, for two wind plants located in differ-
ent places far away from each other, naturally, the wind speed, and as a result,
the distribution that models the wind speed, varies from one plant to the other.
Whereas in the same plant the turbines are located relatively close and then
the wind speed will be almost equal for all turbines, hence they all considered
to have identical distribution. Here is a numerical example to illustrate the
problem.

Example 3.1. Consider a wind system consists of three plants (types) located
in three different regions with considerable divergence. The first plant has 5
turbines (components) with capacities (weights) in megawatts: {w1

1 = 1,w1
2 =

2,w1
3 = 4,w1

4 = 5,w1
5 = 6}. The second plant contains three turbines with
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capacities in mega wats {w2
1 = 3,w2

2 = 4,w2
3 = 8}, and the third plant has

turbines with weights {w3
1 = 9,w3

2 = 10}. We consider a Weibull distribution
with parameters α and β and the density function

f (t,α,β ) = αβ tα−1e−β tα

, t > 0,α > 0,β > 0.

The failure of this system occurs whenever the accumulated outcome energy
from the whole system (from the three plants) becomes less than (k = 30) MW,
then the structure function of the system is

Φ(ε(t)) =

{
1, if ∑

3
i=1 ∑

ni
j=1 w(i)

j I(ε(i)j (t) = 1)≥ 30

0, otherwise,

Obtaining reliability function requests computing the survival signature φ(l1, l2, l3)

for l1 = 0,1,2,3,4,5, l2 = 0,1,2,3 and l3 = 0,1,2. Hence, survival signature
must be computed for all values of lis i.e., for (n1+1)× (n2+1)× (n3+1) =
6× 4× 3 = 72 different cases. The multivariate survival functioins of the
sytstem is computed using a new algorithm in Table ?? where the elements

Table 1: Survival functional for the system

l2 l3
l1

0 1 2 3 4 5

0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

2 0 0 1/10 3/5 1 1

0 0 0 0 0 0 0

1 1 0 0 0 1/10 13/30 1

2 0 1/5 2/3 29/30 1 1

0 0 0 0 0 0 1/3

2 1 0 0 1/5 7/12 9/10 1

2 2/3 13/15 29/30 1 1 1

0 0 0 0 1/10 2/5 1

3 1 0 3/10 17/20 1 1 1

2 1 1 1 1 1 1

φ(l1, l2, l3), l1 = 0,1,2,3,4,5, l2 = 0,1,2,3 and l3 = 0,1,2 refers to the proba-
bility that the system functions with exactly l1, l2 and l3 components from the



Hamdan, K., Tavangar, M. and Asadi, M. 146

first, second and third type respectively. One can obtain the reliability function
of the system using the elements organized in Table 1. Using (3) we have

P(Ts > t) =
5

∑
l1=0

3

∑
l2=0

2

∑
l3=0

φ(l1, l2, l3)×
3

∏
i=1

(
ni

li

)
F li

i (t)F
ni−li
i (t)),

where Fi(t) and F i(t), i = 1,2,3 are the cumulative distribution function
and the reliability function for the type i i.e, for Weibull distribution W (1,2),
W (2,3) and W (3,5) respectively. Reliability functions of the system in the
case when F1(t) ∼W (2,3), F2(t) ∼W (1,2) and F3(t) ∼W (3,5) and in the
case when F1(t)∼W (2,3), F2(t)∼W (3,5) and F3(t)∼W (1,2) are plotted in
Figure 1.
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Figure 1: Reliability functions of the system for the two different cases.

Figure 1 shows that in the case of F1(t) ∼W (2,3), F2(t) ∼W (1,2) and
F3(t)∼W (3,5), we have a more reliable system than the second case.

Furthermore, reliability functions of the system with all possible cases of
the distributions between the three types with a system threshold k = 30 are
plotted in Figure 2 where all these possible cases are organized in Table 2

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Type 1 W(1,2) W(1,2) W(2,3) W(2,3) W(3,5) W(3,5)

Type 2 W(2,3) W(3,5) W(1,2) W(3,5) W(1,2) W(2,3)

Type 3 W(3,5) W(2,3) W(3,5) W(1,2) W(2,3) W(1,2)

Table 2: All possible cases for the three types distributions

It is clear from Figure 2 that the most reliable system we will have is in



The 7th Seminar on Reliability Theory and its Applications 147

case 1

case 2

case 3

case 4

case 5

case 6

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

time t

R
el

ia
b

il
it

y
fu

n
ct

io
n

P
HT

s
³

t
L

Figure 2: Reliability functions for all cases.

the case of F1(t)∼W (2,3), F2(t)∼W (1,2) and F3(t)∼W (3,5) whereas the
worse case is when F1(t)∼W (2,3), F2(t)∼W (3,5) and F3(t)∼W (1,2). All
the other cases are between these two cases as the above figure illustrates.

4 Conclusions

In the present paper, we introduced the concept of extended survival signature
for the case of weighted k-out-of-n systems. Assuming that each component in
the system has its own capacity (weight) and the system starts operating at time
t= 0. It was assumed that the failure of the system occurs when the total weight
of the functioning components becomes less than a predetermined threshold
k. The reliability function of the system lifetime is represented in terms of
extended survival signature. Some illustrated examples were also provided.
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Abstract: In this talk, we propose a maintenance model for a warranted co-
herent system. The warranty period has two phases under which the manufac-
turers commitment comes in two different forms. In Phase I, upon the system
failure, the failed components are replaced and a corrective maintenance is
conducted on the system. If the system failure occurs during Phase II, only a
minimal repair is performed on the whole system. Following the expiration
of warranty, the customer replaces the failed components and preventively
maintained the system at the end of such a maintenance period. During the
maintenance period, a generalization of age-based maintenance model is con-
ducted on the system and components. The main goal is to determine, from
the customers perspective, the optimal planned time of preventive maintenance
in the maintenance period. A numerical example is provided to illustrate the
proposed optimal maintenance model.
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1 Introduction

Nowadays, due to advancement of technology and very competitive markets,
the manufacturers are under pressure to provide better services for their prod-
ucts during a pre-specified time period, referred to as the warranty period.
Thus, almost all products are sold by offering a long-term warranty. The war-
ranty is a contract between the product manufacturer (vendor or seller) and the
customer (buyer). The manufacturer assures that, in the case of product failure
under normal usage, it will repair, replace or provide pre-defined compensa-
tion to the buyers within the warranty duration ([17] and [19]). Considering
the characteristics of products such as the products complexity, reliability and
repairability, the manufacturer can offer different types of warranties ([11]).

Among various types of warranty, there exist two general types of warranty
policies: renewing warranty and non-renewing warranty. Under a renewing
warranty, a failed product within the warranty duration is replaced by a new
one, and the warranty is renewed at no charge to the customer or at a partial
cost to the customer. Under a non-renewing warranty, the failed product is
satisfactorily serviced only within the initial warranty period. That is, when
the product has failed, it is replaced or repaired at no cost to the customer or at
a certain cost to the customer and the warranty is not renewed.

Usually, the customer is mainly interested in developing the optimal main-
tenance strategy after the warranty expires. Maintenance strategies play an
essential role in retaining product reliability, availability and quality at a suit-
able level. In the literature, maintenance is generally grouped into two main
types: corrective maintenance (CM) and preventive maintenance (PM). The
CM is an unplanned action that is performed after products failure and restores
it to an operational state, whereas the PM is an action which is performed at
a planned time before products failure. According to degree of repair of the
product, the maintenance actions are also classified into two main categories.
The first type of maintenance action is known as minimal which is a repair
action that restores the system to the working state identical to that of before
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failure. The second one is the perfect repair under which the system returns to
as-good-as-new state. A large number of research works are devoted to var-
ious maintenance schedules. Among many references, we refer the reader to
[4], [18], [10], [12] and [5].

At the beginning of the 21th century, both warranty and maintenance have
received increasing attention. In the literature, some remarkable research works
have also been appeared that links warranty and maintenance. [3] considered
an age-replacement model in which incorporates minimal repair for products
under a renewing free-replacement warranty policy. The impacts of a product
warranty on the optimal replacement model are also investigated. [15] pre-
sented a literature review for the articles that link warranty and maintenance.
[16] proposes, from the consumers perspective, a replacement policy after the
expiry of the warranty, under the renewable free replacement warranty policy
in which the replacement is dependent on the repair-cost threshold. For more
references on warranty and maintenance, we refer, among others, to [13], [8],
[7], [9].

In the present paper, we are mainly interested in developing the optimal
maintenance models using the signature-based reliability representation of the
system lifetime. This representation enables us to propose cost-based optimal
models such that at each time in which the maintenance action should be per-
formed, the repairs/replacements are carried out not only on the entire system
but also on each component. Also, for a coherent system sold with warranty,
we consider the optimal maintenance strategies from the customers perspec-
tive after the warranty expires.

The arrangement of the paper is as follows: In Section 2, we first give the
mixture representation of the system reliability function based on the concept
of signature. We then propose a maintenance model for a warranted coherent
system. To illustrate the results of the paper, a numerical example is provided
in Section 3.
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2 General maintenance model following warranty period

In assessing the reliability and stochastic properties of coherent systems, an
approach, which has received great attention, is to use the notion of signature.
For a coherent system (see, [2]) with n independent and identically distributed
components, let X1,X2, ...,Xn denote the lifetimes of components with cumula-
tive distribution function F and probability density function f . The reliability
function H̄(t) = P(T > t) of the system’s lifetime T = τ(X1, ,Xn) is given as
([14])

H̄(t) =
n

∑
i=1

si(1−Fi:n(t))

=
n−1

∑
i=0

S̄i

(
n
i

)
F i(t)(1−F(t))n−i,

where Xi:n is the ith smallest among X1,X2, ,Xn with cumulative distribution
function Fi:n(t), si = P(T = Xi:n), i = 1,2, ...,n and S̄i = ∑

n
j=i+1 si. The prob-

ability vector s = (s1,s2, ,sn) is known as the signature vector of the system.
The ith element of s is, in fact, the probability that the ith component failure
causes the system failure. It is calculated as si = ni/n!, where ni denotes the
number of permutations of components under which the ith component failure
causes the system failure.

Now, assume that a new coherent system consisting of n components begins
to operate at time t = 0. The system manufacturer offers a warranty duration
of length w at the beginning of system operation. The warranty period (0,w)
is separated into two non-overlapping subintervals (0,αw) and (αw,w) with
0 ≤ α ≤ 1, referred respectively to as Phase I and Phase II. The two-phase
warranty considered in this section works as follows. When the system fail-
ure occurs during Phase I, the failed components are replaced and a CM are
performed on the whole system, and the warranty is renewed with the original
warranty terms. If the failure occurs during the Phase II, only a minimal repair
is conducted on the whole system by the manufacturer.

If there is no Phase I, that is, α = 0, then the manufacturer only performs
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minimal repair on the system during the whole warranty period (0,w). On
the other hand, if α = 1, Phase II is omitted and the failed system is rectified
by replacing the failed components and CM on the system during the entire
warranty period (0,w).

When the two-phase warranty expires, the customer takes over the full re-
sponsibility for maintaining the system. As a maintenance model following
the warranty period, we consider an age-based model. If the system fails dur-
ing the interval (w,w+TPM), the failed components are replaced and a CM are
performed on the whole system; but if the system is still alive until w+TPM,
the failed components are again replaced and the operator performs a PM on
the entire system. Here, TPM is a planned fixed time. It is assumed that both
CM and PM are perfect so that the system will be as-good-as-new.

After the warranty expires, the customer is fully responsible for the cost
incurred during the life cycle of the system. In order to improve the system
operation, the customer may conduct a preventive maintenance strategy on
the system/components. So far, a huge number of maintenance models for
systems have been appeared in the literature. In this section, an age-based
maintenance policy among various existing maintenance models is applied on
the system beyond the expiration of the warranty and the expected cost rate
is evaluated from the customers perspective. In an age-based maintenance
strategy, each maintenance period ends at age TPM +w or whenever the system
fails, whichever occurs first.

Let Tw = (T −w | T > w) be the residual lifetime of the system when the
warranty expires. The reliability function of Tw is given by

H̄(x | w) = H̄(w+ x)
H̄(w)

, x≥ 0.

Suppose that M denotes the number of system failures during the Phase I war-
ranty of length αw. Therefore, the random variable M has the following geo-
metric distribution,

P(M = m) = H̄(αw)Hm(αw), m = 0,1,2, ...
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with the expected value H(αw)/H̄(αw). Let Ti, i = 12, ..., where Ti < αw,
denote the lifetimes of the systems consecutively installed during the time in-
terval (0,αw). Assume that S(TPM) is the duration of each life cycle under
our proposed maintenance model including the warranty term. The expected
length of life cycle can then be obtained as

E[S(TPM)] = E

(
M

∑
j=1

Tj

)
+w+min(TPM,Tw)

= E(M)E(T1 | T1 < αw)+w+
∫ TPM

0

H̄(w+ x)
H̄(w)

dx

=
∫

αw

0

xh(x)
H̄(αw)

dx+w+
∫ TPM

0

H̄(w+ x)
H̄(w)

dx.

Under such a maintenance model, whenever the age of the system reaches
planned time TPM +w, the failed components are replaced by new ones at a
cost cR and a PM action is performed on the system at a cost cPM. On the other
hand, if the system fails in the interval (w,w+TPM), in a similar manner, the
failed components are replaced by new ones at a cost cR and a CM action is
performed on the system at a cost cCM. In addition, during the warranty period,
we consider a system failure cost at a cost cF which is the responsibility of the
customer.

The costs of components replacement, CM and minimal repairs are free of
charge for the customer on the warranty period (0,w). Suppose that C(TPM)

denotes the total cost incurred by the customer. Then, the expected total cost,
from the viewpoint of the customer, in the warranty period and the mainte-
nance period is

E[C(TPM)] = (cRE[NTPM+w | T > TPM +w]+ cPM)P(Tw > TPM)

+(cRE[NT | w < T < TPM +w]+ cCM)P(Tw < TPM)

+ cFE(M)+ cF

∫ w

αw
λ (t)dt,

where Nt is the number of failed component of the system at the time t. Using
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a result in [1], we have

E[Nt | T > t] =
∑

n−1
i=1 iS̄i

(n
i

)
F i(t)F̄n−i(t)

H̄(t)
.

Also, it can be shown that

E[NT | w < T < w+ t] =
∑

n
i=1 isi[Fi:n(w+ t)−Fi:n(w)]

H(w+ t)−H(w)
.

Thus

E[C(TPM)] = cF

(
H(αw)
H̄(αw)

+
∫ w

αw
λ (t)dt

)
+

(
cR

∑
n−1
i=1 iS̄i

(n
i

)
F i(TPM +w)F̄n−i(TPM +w)

H̄(TPM +w)
+ cPM

)
H̄(TPM +w)

H̄(w)

+

(
cR

∑
n
i=1 isi[Fi:n(TPM +w)−Fi:n(w)]

H(TPM +w)−H(w)
+ cCM

)(
1− H̄(TPM +w)

H̄(w)

)
.

Therefore, the long-run expected cost per unit of time for the coherent system
under the proposed maintenance model is (see, e.g. Ross, 1996)

η(TPM) =
E[C(TPM)]

E[S(TPM)]
. (1)

In the following, we specify the optimal value T ∗PM minimizing the expected
cost rate from the customer’s perspective. It may be interested to determine
the optimal value T ∗PM which results in the minimum value for the expected
cost rate. In other words, the optimization problem can be formulated as min-
imizing the expected cost rate η(TPM), given in Equation (1), with respect to
the decision variable TPM.

In the next proposition, sufficient conditions for the existence of the optimal
value T ∗PM are provided. The proof can be found in [6].

Proposition 2.1. Let the signature vector s be such that (n− i)si/S̄i is increas-

ing in i, and η(TPM) be as given in Equation (1). Assume that n∗ = max{i :
si > 0}. Let also m(w) be the mean residual life function of the system at w. If[
(n∗−1)2cRr̃(w)+(n−n∗+1)(cCM− cPM +n∗cR)r(w)

](
w+

∫
αw
0 xh(x)dx

H̄(αw)

)
< cPM,
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and

λ (∞)>
(n∗−1)cR + cCM +(H(αw)/H̄(αw)+

∫ w
αw λ (x)dx)cF

(cCM− cPM +(n−n∗+1)cR)(w+m(w)+
∫

αw
0 xh(x)dx/H̄(αw))

,

then there exists a finite optimum value T ∗PM that minimizes η(TPM).

3 Numerical example

This section presents a numerical example to illustrate the proposed optimal
maintenance model. Let us consider the coherent system depicted in Figure 1.
The system’s signature is computed, using a Mathematica program, as

s =
(

0,
1

45
,

37
360

,
57
280

,
163
630

,
143
630

,
19
140

,
1
20

,0,0
)
.

The lifetimes of components are assumed to be independent and have a com-
mon Weibull distribution with failure rate λ (t) = 0.1163

√
t. Suppose that the

parameter values we set for this particular numerical example are as follows:
The replacement cost for each failed component is cR = 30 and the length of
two-phase warranty period is w = 1.5.

1

2

3

4

5

6

7

8

9

10

Figure 1: A system with 10 components.

Tables 1 contains the optimum values T ∗PM and the optimum cost η(T ∗PM)

from customer’s perspective. An analysis of the results of this table indicates
that when cCM gets larger, then, as expected, the optimal time T ∗PM of PM
decreases. In other words, the PM time should be earlier to prevent system
failure and the customer incur less maintenance costs. Also, it is observed
that an increase in cCM results in an increase in η(T ∗PM). It is seen that when
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cPM increases, then the optimal time of PM gets larger, too. This means that
an increase in the cost of preventive maintenance of the system makes the
customer to postpone the time of PM action.

Table 1: The optimal T ∗PM and η(T ∗PM) for different values of cPM and cCM with cR = 30, cF = 10, p = 0.8, α = 0.4 and w = 1.5.

cPM

200 210 220

cCM T ∗PM η(T ∗PM) T ∗PM η(T ∗PM) T ∗PM η(T ∗PM)

330 2.752 109.274 3.095 110.431 3.519 111.332

340 2.588 110.702 2.889 112.002 3.248 113.056

350 2.448 112.058 2.214 113.491 3.027 114.687

The plot of maintenance cost per unit time from customer’s perspective is
depicted in Figure 1 for cF = 10, cR = 30, cCM = 340, cPM = 220, w = 1.5 and
α = 0.4.

Figure 2: The maintenance cost function with p = 0.8.

4 Conclusions

For a warranted coherent system, it is of essential importance to establish opti-
mal maintenance strategies after the warranty expires. The purpose of this pa-
per was to propose an optimal preventive maintenance model for warranted co-
herent systems. The warranty period was separated into two non-overlapping
periods, named Phase I and Phase II. We utilized the expected cost rate per unit
time as a criterion of the optimality. We also considered sufficient conditions
for the existence and uniqueness of the optimal decision variable. The results
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were developed by using the signature-based reliability representation of the
system lifetime. In the proposed models, we concentrated on the case where
the lifetimes of components are independent and identically distributed. It is
interesting to consider, as a future study, the case of dependent and/or non-
identical components which is a more realistic assumption in some practical
situations.
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Abstract: One of the important issues in a warranty plan issued by sellers or
in an insurance plan undertaken by insurance companies is determining the
plan duration and the frequency of service provision in an attempt to minimize
the costs or maximize the profits. In this paper, we determined the optimal
extended warranty length with limited number of repairs in the warranty dura-
tion. For this purpose, a rate cost function is introduced and the optimal values
of the warranty plan are obtained based on it.
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tion, Warranty period.

1 Introduction

Due to advances in technology and the need to produce and use complex in-
dustrial systems, consumers of these products are always concerned about the
rising purchasing costs or reliability of the purchased product. Manufacturers
also want to increase the number of customers of their products and the profit
from their sales. Therefore, a warranty is considered to be a contract or agree-
ment between the seller and the buyer that starts at the moment of purchase of
the product and continues until the end of the warranty period. So one of the
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important issues in a warranty plan issued by sellers or in an insurance plan
undertaken by insurance companies is determining the plan duration and the
frequency of service provision in an attempt to minimize the costs or maximize
the profits. For this purpose, various types of warranties have been introduced
and discussed so far. For instance, free repair warranty (FRW) and pro-rata
warranty (PRW) are the most popular classes of warranty policies which have
received much attention.

In general, two types of repair action can be taken to repair a repairable
system within the warranty period: perfect repair and minimal repair, and the
system state depends on the type of repair implemented. [4] introduced an ex-
tended warranty policy that includes a FRW period and an extended warranty
period. Then, they obtained the optimal policies for the consumers and the
manufacture. [2] studied a repair cost limitation during a fixed warranty period
and assumed that if the cost of repairs during the warranty period is more than
a fixed amount, minimal repairs will no longer be performed. [1] developed
lifetime warranty policies and models for predicting failures and estimating
costs for lifetime warranty policies. [6] introduced a new two-dimensional (2-
D) warranty policy with respect to the failure time and warranty servicing time.
[7] studied the consumer’s and the manufacturer’s optimal strategies for items
sold with periodic PM under a 2-D warranty policy. [5] considered an opti-
mal periodic PM policy after the expiration of 2-D warranty. [8] investigated
a multi-phase reliability growth test program for repairable products that sold
with a 2-D warranty. In this paper, we proposed an extended two-dimensional
warranty policy which includes limitation on time and the number of repairs.
Then, using an appropriate cost function, we will find the optimal values of
the extended warranty period and the number of minimal repairs.

In Section 2, model description and the cost function are explained. The
functions required to define the cost function are presented in Section 3. The
numerical optimization results are studied in Section 4.
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2 Model assumptions and cost function

Let us consider a repairable system that can be minimally repaired after each
failure and sold with an extended warranty model. The product is sold with
an initial warranty period and an extended warranty period with the condition
of limiting the number of minimal repairs. The proposed extended warranty
period is such that the manufacturer agrees to repair at most n minimal repairs
in a limited warranty period [0,w]. If the number of repairs in the warranty
period [0,w] is less than n failures, the warranty period will extend up to the
nth failure occurs or up to a prefixed time τ is passed. It means that the duration
of the company’s services or the warranty length is stopped at Tw =min{Tn,τ},
where Tn is the time at which the nth minimal repair is done. We carry out our
study under the following assumptions and notation.

1) A new system is put into the operation at time t = 0.

2) All failures are detected immediately, and the repair times are negligible.

3) A minimal repair does not change the failure rate.

4) All repair costs are charged by the manufacturer in the period [0,Tw].

5) The consumer will have to pay a fee proportional to the ratio of the re-
maining repairs to the duration of the extended warranty length.

Figure 1: The graph of the proposed plan, where × and© denote the failure times and the end of the warranty period, respectively.

The purpose of this study is to find the optimal values of n and τ by minimizing
the costs of the manufacturer. Note that this warranty plan is introduced by
[3]. They use two cost functions to find the optimal values of the plan. But,
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in this paper, we use the rate of cost associated with the duration of system
operation. With this in mind, suppose that N(t), E(N(t)) and E(Tw) are the
number of minimal repairs in (0, t), expected number of minimal repairs and
expected duration of the warranty, respectively. Therefore, the rate of costs is
considered as follows

RCw(n,τ) =−C0 +C1E(N(Tw))−C2
E (N(Tw−w)|Tw > w)

E (Tw|Tw > w)
, (1)

where C0 =C′′0 −C′0, C′0 is cost of the system production for the manufacturer
and C′′0 is the initial purchase price for the consumer. C1 is the cost of each min-
imal repair paid by the manufacturer. It includes labor, administrative costs,
etc. C2 is the cost paid by the consumer to extend the warranty period.

Let f (.) and F(.) be the probability density function (pdf) and cumulative
distribution function (cdf) of the lifetime of the original system, respectively.
By the assumptions, {N(t); t ≥ 0} can be verified as an nonhomogeneous
Poisson process (NHPP). Then, the probability mass function (pmf) of N(t) is
given by

P(N(t) = n) =
(Λ(t))n−1

(n−1)!
exp(−Λ(t)) , n = 1,2, . . . , (2)

where Λ(t) = − log(1−F(t)) is the cumulative failure rate of the original
system or the cumulative ROCOF of the repairable system. Also, the cdf of Tn

is given by

FTn(t) = 1−
n−1

∑
i=0

(Λ(t))i

i!
exp(−Λ(t)) . (3)

By using (3), the survival function of T = min{Tn,τ} (i.e., F̄Tw(t) = 1−FTw(t))
is given by

F̄Tw(t) =

F̄Tn(t), t ≤ τ,

0, t > τ.
(4)

From (4) by positivity of T , the conditional expected value of T is

E (Tw|Tw > w) = E (min{Tn,τ}|Tn > w) =
1

F̄Tn(w)

∫
τ

w
F̄Tn(x)dx+w. (5)
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On the other hand, using (3) and (3), the expected number of minimal repairs
in [0,Tw] can be written as follows

E (N(Tw)) = nFTn(τ)+Λ(τ)
(
1−FTn−1(τ)

)
. (6)

The expected number of minimal repairs in the extended warranty period is
given by

E(N(Tw−w)|Tw > w) = (n−Λ(w))(FTn(τ)−FTn(w))+(Λ(τ)−Λ(w)) F̄Tn(τ).

(7)

Therefore, numerical methods need to be used to obtain the optimal values of
the warranty plan. So, we use the algorithm that proposed by [3].

3 Numerical results

To illustrate the results in the previous sections, we present some graphical and
numerical computations. Throughout this section, assume that the lifetime of
the original system follows the Weibull distribution with λ (t) = btb−1, b >

0, t > 0. It is obvious that in this case, the ROCOF is increasing in t for b > 1
and decreasing in t for b < 1. Also, we assume that C0 = 30, C1 = 50, C2 =

150 and w = 1. Figure 2 shows that the rate cost function (2) has an optimal
solution in n and τ when b = 2. From Figure 3, it is obvious that the minimum
of this cost function is unique in τ for some selected values of n. In Figure 4,
it is shown that the rate cost function (5) has an optimal solution in n for some
selected values of τ .

We have determined the optimal values of (n∗,τ∗) and RCw(n∗,τ∗) for dif-
ferent values of b and w. The results are presented in Tables 1 and 2, respec-
tively.
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Figure 2: Plot of RCw(n,τ).

Figure 3: Plot of RCw(n,τ) for selected value of n.

Figure 4: Plot of RCw(n,τ) for selected value of τ .
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Table 1: Optimum values of (n∗,τ∗) and RCw(n,τ)

b (n∗,τ∗) RCw(n∗,τ∗)

2 (5, 2.1726) -122.3465

2.5 (7, 2.1611) -176.1641

3 (11, 2.2173) -252.223

3.5 (19, 2.3138) -365.4935
(C0,C1,C2) = (30,50,150) and w = 1.

Table 2: Optimum values of (n∗,τ∗) and RCw(n,τ)

w (n∗,τ∗) RCw(n∗,τ∗)

1 (5, 2.1726) -122.3465

1.5 (6, 2.4119) -28.4276

2 (8, 2.7712) 87.2371
(C0,C1,C2) = (30,50,150) and b = 2.
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Systems with Two-dependent Components under Spare Switching Policy
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Abstract: Spares are commonly used to improve system performances. They
are allocated to original components in parallel during system missions. Var-
ious methods for finding optimal allocations have been proposed in the liter-
ature. The optimal configurations depend on system structures and compo-
nent lifetimes. For sake of brevity, lifetimes of components are commonly
assumed to be independent. This paper deals with systems when component
lifetimes are dependent and heterogeneous. Moreover, the spare is also al-
lowed to switch among original components in order to impose more flexibil-
ity for spare management. Explicit expressions for system reliability functions
are derived in details. Since system lifetimes are random phenomena, stochas-
tic orders are utilized for comparison purposes. various illustrative examples
are also given.

Keywords: Reliability, Redundancy, Stochastic orders, Switching.

1 Introduction

Additional components (spares) are used to improve engineering system per-
formances. For more details, see Barlow and Proschan [2], Nakagawa [15].

1Jeddi, H.: ha˙je57@mail.um.ac.ir
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There are many papers deal with redundancy allocation problem in reliability
systems. Boland et al. [5] applied stochastic orders to consider this prob-
lem for series and parallel systems. Zhao et al. [22, 21] studied optimal
allocation of redundancies with exponential components in the sense of var-
ious stochastic orders. Xie et al. [20] investigated the redundancy alloca-
tion problem in k-out-of-n hot standby systems to maximize the operational
availability. But in the case of dependent components, there are not many
works. Among a few works, Navarro et al. [17] studied the performance of
a system composed by different kinds of units maybe having dependent life-
times to evaluate reliability. Navarro and Durante [16] studied the behaviour
of the residual lifetimes of coherent systems with possibly dependent com-
ponents. Belzunce et al. [3, 4] used the concept of joint stochastic orders
and Jeddi and Doostparast [8, 9] studied this problems for series and paral-
lel systems. Redundants are allocated to original components during system
missions. Commonly, spares do not switch among the original components.
This restriction usually exist in industrial systems. Meanwhile in some appli-
cations such as networks, system managers may be able to control and switch
spares among original components to achieve more reliable systems. In other
words, redundants can change dynamically their respective original compo-
nents; For more examples and recent developments, see Kim et al. [12], Li
et al. [14], Jia et al. [11] and references therein. Notice that, the spare can
not switch if the corresponding original component fails. In the sequel, let
(Ω,F, p) be a probability space and X = (X1, · · · ,Xk) : Ω→R+k, for k≥ 1, be
an absolutely continuous random vector with the joint distribution (survival)
function FX1,···,Xk(a1, · · · ,ak) = P(X1 ≤ a1, · · · ,Xk ≤ ak)(FX1,···,Xk(a1, · · · ,ak) =

P(X1 > a1, · · · ,Xk > ak)) for all (a1, · · · ,ak) ∈ R+k. Then, the density function
of X is given by fX1,···,Xk(a1, · · · ,ak) = ∂FX1,···,Xk(a1, · · · ,ak)/(∂a1 · · ·∂ak). The
marginal distribution of Xi(1 ≤ i ≤ k) is denoted by FXi(x) = P(Xi ≤ x),∀x ∈
R+k. The random variabels Xi is said to be smaller than X j( j 6= i) in usual
stochastic order denoted by Xi ≤st X j if FXi(x) ≥ FX j(x),∀x ∈ R+k. Equiv-
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alantly, FXi(x)≤ FX j(x) where FXi(x) = 1−FXi(x) for 1≤ i≤ k; See Shaked
and Shanthikumar [19].

This paper is organized as follows. In Section 2, a general form for the
system reliability function is presented under two above-mentioned schemes.
The main result for systems with heterogeneous and dependent component
lifetimes are given and proved in Section 3. Section 4 deals with some special
cases which simplify the obtained general findings. Section 5 concludes the
paper.

2 Building and deriving reliability function

Consider a 2-component series system consisting of a spare which can be
added to the system configuration. The spare can switch only one-time. Let
τ > 0 be a preassigned deterministic constant and T [0,τ]

i (i = 1,2) denote the
system lifetime when the spare is allocated (in parallel) to Component i during
interval [0,τ] and then to Component j(6= i) beyond τ(> 0). In sequel, the
reliability function of the system is derived when the spare allows to switch
among the system components. To do this, let X1 and X2 denote the compo-
nent lifetimes, and S stands for the spare lifetime. The system lifetime without
the spare is ∧(X1,X2). As above mentioned, the system can be improved by
utilizing the spare. Then the lifetime of the improved system, that is T [0,τ]

1 is
given by

T [0,τ]
1 =


∧(∨(X1,S),X2), if X1 ≤ τ,

X2, if X1 > τ,X2 ≤ τ,

τ +∧(X1− τ,X2− τ), if X1 > τ,X2 > τ,S≤ τ,

τ +∧(X1− τ,∨(X2− τ,S− τ)), if X1 > τ,X2 > τ,S > τ,

=


∧(∨(X1,S),X2), if X1 ≤ τ,

X2, if X1 > τ,X2 ≤ τ,

τ +∧(X1− τ,∨(X2− τ,S− τ)), if X1 > τ,X2 > τ,
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=


∧(∨(X1,S),X2), if X1 ≤ τ,

X2, if X1 > τ,X2 ≤ τ,

∧(X1,∨(X2,S)), if X1 > τ,X2 > τ,

(1)

where ∨(a1,a2) = max{a1,a2} and ∧(a1,a2) = min{a1,a2}. Similarly

T [0,τ]
2 =


∧(X1,∨(X2,S)), if X2 ≤ τ,

X1, if X2 > τ,X1 ≤ τ,

∧(∨(X1,S),X2)), if X2 > τ,X1 > τ.

(2)

Equations (1) and (2) can be simplified after some algebraic manipulations, as

T [0,τ]
1 = ∧(∨(X1,S),X2)I(X1 ≤ τ)+X2I(X1 > τ,X2 ≤ τ)

+ ∧(X1,∨(X2,S))I(X1 > τ,X2 > τ), (3)

and

T [0,τ]
2 = ∧(X1,∨(X2,S))I(X2 ≤ τ)+X1I(X2 > τ,X1 ≤ τ)

+ ∧(∨(X1,S),X2))I(X2 > τ,X1 > τ), (4)

where IA(t) denotes the indicator function on the set A, i.e., IA(t) = 1 for t ∈ A,
and IA(t) = 0 otherwise. From Equation (3), we have for 0 < t < τ ,

P(T [0,τ]
1 > t) = P(T [0,τ]

1 > t,X1 ≤ τ)+P(T [0,τ]
1 > t,X1 > τ,X2 ≤ τ)

+ P(T [0,τ]
1 > t,X1 > τ,X2 > τ)

= P(∧(∨(X1,S),X2)> t,X1 ≤ τ)+P(X1 > τ,X2 ≤ τ,X2 > t)

+ P(∧(X1,∨(X2,S))> t,X1 > τ,X2 > τ)

= P(∨(X1,S)> t,X1 ≤ τ,X2 > t)+P(X1 > τ, t < X2 ≤ τ)

+ P(X1 > t,∨(X2,S)> t,X1 > τ,X2 > τ)

= P(X1 ≤ τ,X2 > t)−P(X1 ≤ τ,X2 > t,X1 ≤ t,S≤ t)

+ P(X1 > τ,X2 > t)−P(X1 > τ,X2 > τ)

+ P(X1 > τ,X2 > τ)−P(X1 > τ,X2 > τ,X2 ≤ t,S≤ t)

= P(X1 ≤ τ,X2 > t)−P(X1 ≤ t,X2 > t,S≤ t)

+ P(X1 > τ,X2 > t)
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= P(X2 > t)−P(X1 ≤ t,S≤ t)+P(X1 ≤ t,X2 ≤ t,S≤ t)

= 1−FX2(t)−FX1,S(t, t)+FX1,X2,S(t, t, t). (5)

Similarly for t ≥ τ ,

P(T [0,τ]
1 > t) = P(T [0,τ]

1 > t,X1 ≤ τ)+P(T [0,τ]
1 > t,X1 > τ,X2 ≤ τ)

+ P(T [0,τ]
1 > t,X1 > τ,X2 > τ)

= P(∧(∨(X1,S),X2)> t,X1 ≤ τ)+P(X1 > τ,X2 ≤ τ,X2 > t)

+ P(∧(X1,∨(X2,S))> t,X1 > τ,X2 > τ)

= P(∨(X1,S)> t,X1 ≤ τ,X2 > t)

+ P(X1 > t,∨(X2,S)> t,X1 > τ,X2 > τ)

= P(X1 ≤ τ,X2 > t)−P(X1 ≤ τ,X2 > t,X1 ≤ t,S≤ t)

+ P(X1 > t,X2 > τ)−P(X1 > t,X2 > τ,X2 ≤ t,S≤ t)

= P(X1 ≤ τ,X2 > t)−P(X1 ≤ τ,X2 > t,S≤ t)

+ P(X1 > t,X2 > τ)−P(X1 > t,τ < X2 ≤ t,S≤ t)

= P(X1 ≤ τ,X2 > t,S > t)+P(X1 > t,X2 > τ)

−P(X1 > t,X2 > τ,S≤ t)+P(X1 > t,X2 > t,S≤ t)

= P(X1 ≤ τ,X2 > t,S > t)+P(X1 > t,X2 > τ)

−P(X1 > t,X2 > τ,S≤ t)+P(X1 > t,X2 > t,S≤ t)

= P(X2 > t,S > t)−P(X1 > τ,X2 > t,S > t)

+P(X1 > t,X2 > τ,S > t)+P(X1 > t,X2 > t)−P(X1 > t,X2 > t,S > t)

= F̄X2,S(t, t)− F̄X1,X2,S(τ, t, t)+ F̄X1,X2,S(t,τ, t)+ F̄X1,X2(t, t)

−F̄X1,X2,S(t, t, t). (6)

From Equations (5) and (6), the reliability functions of the system lifetimes
T [0,τ]

1 and T [0,τ]
2 are F

T [0,τ]
1

(t) = g1(t)I[0,τ)(t) + g2(t)I[τ,∞)(t), and F
T [0,τ]

2
(t) =

z1(t)I[0,τ)(t)+ z2(t)I[τ,∞)(t) where gi(t) and zi(t)(i = 1,2) are defined by

g1(t) = F̄X2(t)−FX1,S(t, t)+FX1,X2,S(t, t, t), (7)

g2(t) = F̄X2,S(t, t)− F̄X1,X2,S(τ, t, t)+ F̄X1,X2,S(t,τ, t)+ F̄X1,X2(t, t)− F̄X1,X2,S(t, t, t),

(8)
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z1(t) = F̄X1(t)−FX2,S(t, t)+FX1,X2,S(t, t, t), (9)

z2(t) = F̄X1,S(t, t)− F̄X1,X2,S(t,τ, t)+ F̄X1,X2,S(τ, t, t)+ F̄X1,X2(t, t)− F̄X1,X2,S(t, t, t).

(10)

Remark 2.1. Notice that limt→τ− g1(t) = limt→τ+ g2(t) and limt→τ− z1(t) =

limt→τ+ z2(t). Therefore, the reliability functions of the system lifetimes T [0,τ]
1

and T [0,τ]
2 are continuous in t for all t > 0.

3 Main results

System lifetimes are random variables and then partially orders should be con-
sidered for comparison purposes. Among various partially orders, stochastic
orders are commonly used in reliability analyses. In this section, the main re-
sult of this paper is presented which hold under a general setting for the com-
ponent and spare lifetimes. In the rest of this paper and for lifetimes U1,U2

and U3, let F̄U1|(U2,U3)(u1|u2,u3) := P(U1 > u1|U2 > u2,U3 > u3).

Proposition 3.1. Let X1, X2 and S be dependent random variables and τ

be a given positive constant. If [X1|S = s] ≤st [X2|S = s] for all s ≥ 0 and

F̄X1|(X2,S)(τ|t, t) ≤ 1/2 and F̄X2|(X1,S)(τ|t, t) ≥ 1/2 for t > τ ,then T [0,τ]
1 ≥st

T [0,τ]
2 .

Proof. [i] For 0 < t ≤ τ , Equations (7) and (9) conclude

FT1
[0,τ](t)−FT2

[0,τ](t) = F̄X2,S(t, t)− F̄X1,S(t, t)

=
∫ +∞

t

(
P(X2 > t|S = s)−P(X1 > t|S = s)

)
dFS(s)≥ 0,(11)

since X1|S = s≤st X2|S = s for all s¿0. For t > τ , Equations (8) and (10) imply

FT1
[0,τ](t)−FT2

[0,τ](t) = F̄X2,S(t, t)− F̄X1,S(t, t)+2F̄X1,X2,S(t,τ, t)−2F̄X1,X2,S(τ, t, t)

= F̄X2,S(t, t)(1−2F̄X1|X2,S(τ|t, t))+ F̄X1,S(t, t)(1−2F̄X2|X1,S(τ|t, t))
≥ 0. (12)

Since F̄X1|(X2,S)(τ|t, t)≤ 1/2 then F̄X2|(X1,S)(τ|t, t)≥ 1/2, and the desired result
follows.
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To compare the system lifetimes, one can find some results under some con-
ditions. In sequel, system lifetimes are compared for independent variabels.

4 Independent spare

Here, some conditions are assumed which simplify the main result in Propo-
sition 3.1. First, assume that the spare is independent of original component
lifetimes X1 and X2 while the components may be dependent. The next corol-
lary is immediately followed from Proposition 3.1. More details of proof are
given in Jeddi and Doostparast [10].

Corollary 4.1. Let S be independent of (X1,X2). If X1 ≤st X2 and for t > τ ,

F̄X1|X2(τ|t)≤ 1/2 and F̄X2|X1(τ|t)≥ 1/2 then T [0,τ]
1 ≥st T [0,τ]

2 .

Proposition 4.2. Let X1, X2 and S be independent. If X1 ≤st X2 and m1 <

τ < m2, where m1 and m2 stand for medians of X1 and X2, respectively. Then

T [0,τ]
1 ≥st T [0,τ]

2 .

Proof. [i] For 0 < t ≤ τ , Equations (7) and (9) conclude

FT1
[0,τ](t)−FT2

[0,τ](t) = g1(t)− z1(t)

= FX1(t)−FX2(t)+FX2(t)FS(t)−FX2(t)FS(t)

= F̄S(t)(FX1(t)−FX2(t))≥ 0, (13)

since X1 ≤st X2. For t > τ , Equations (8) and (10) imply

FT1
[0,τ](t)−FT2

[0,τ](t) = g2(t)− z2(t)

= F̄X2(t)F̄S(t)− F̄X1(t)F̄S(t)

+2(F̄X1(t)F̄X2(τ)F̄S(t)− F̄X1(τ)F̄X2(t)F̄S(t))

= F̄X2(t)F̄S(t)(1−2F̄X1(τ))+ F̄X1(t)F̄S(t)(2F̄X2(τ)−1)

≥ 0, (14)

since τ > m1 and τ < m2. and the desired result follows.

Proposition 4.2 says that if component and spare lifetimes are independent,
the spare should allocate to the weaker component at least up to its median
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lifetime and then before reaching the median lifetime of the other component,
the spare must switch.

Remark 4.3. The distribution of S in Proposition 4.2 is general and the condi-
tions do not rely on the Df of S.

Example 4.4. Let X1, X2, S be independent exponential random variables with
means 1/λ1, 1/λ2 and 1/λ3, respectively. If λ1 > λ2, then Proposition 4.1
implies that T [0,τ]

1 ≥st T [0,τ]
2 provided that the switching occurs after ln2

λ1
but

before ln2
λ2

, that is ln2
λ1

< τ < ln2
λ2

. 2

Example 4.5. Let X1, X2 and S be independent and Xi ∼ Pa(αi,1), i = 1,2
where αi > 0 and Pa(a,b) stands for the Pareto distribution type 1 with density
f (x) =

a
xa+1 ,x≥ 1. It is easy to see that the medians of X1 and X2, respectively,

are given by m1 =
α1
√

2 and m2 =
α2
√

2 are median of X1 and X2 respectively.
If α1 > α2 and α1

√
2 < τ <

α2
√

2 then T [0,τ]
1 ≥st T [0,τ]

2 from Proposition 4.2.

Example 4.6. Let ϕ be the class of absolutely continues distribution function
Fθ of the form Fθ (x) = 1− e−Kθ (x),x > 0, where Kθ (x) is increasing in x and
positive function θ ∈ Θ. Then the probability of density function is given

by fθ (x) = kθ (x)e−Kθ (x),x > 0, where kθ (x) =
∂

∂x
Kθ (x). This class include

several important distribution such as exponential, Pareto, Weibull and has
been studied in literature; See e.g, Al-Hussaini [1] for more details. Let X1 ∼
Fθ1(x) and X2∼ Fθ2(x). Then medians X1 and X2 are m1 = K−1

θ1
(ln2) and m2 =

K−1
θ2

(ln2) respectively. If Kθ1(x) ≥ Kθ2(x) and K−1
θ1

(ln2)≤ τ ≤ K−1
θ2

(ln2), then

T [0,τ]
1 ≥st T [0,τ]

2 from Proposition 4.2. For example let Kθ (x) =
( x

λ

)α

and Θ =

(α,λ ),α,λ > 0, that is Xi, i = 1,2, has the Weibull distribution with density
function fαi,λ (x) = αixαi−1λ αie−(x/λ )αi

,αi,λ > 0, therefore mi = K−1
θi

(ln2) =
αi
√

ln2 where Θi = (αi,λ ), i = 1,2. If α1 > α2 and α1
√

ln2 < τ <
α2
√

ln2 then
T [0,τ]

1 ≥st T [0,τ]
2 from Proposition 4.2. 2



Jeddi, H. and Doostparast, M. 177

5 Conclusions

This paper derived the system reliability function consisting of two original
components and an additional spare. The spare can switch among the original
ones. The finding are under a general setting. The optimal scheme for switch-
ing was also provided. Some special cases which have also practical applica-
tions were also studied in details. The results of this paper may be extended
in various directions. For example, one can study the system behaviour under
some parametric conditions such as the multivariate distribution functions for
the component lifetimes. Engineering systems including parallel-series and
series-parallel as well as coherent systems are worth for consideration.
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A General Algorithm for Optimal Redundancy Allocation in Coherent
Systems
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Abstract: The redundancy allocation to original system components is a com-
mon technique to improve the system reliability and its performance. This
paper considers a coherent system consisting of n independent components
equipped with m independent redundant components. Both common schemes
for allocating the redundant components to the system, called active and standby

redundancies are considered. The essential problem which is of great impor-
tance in redundancy allocation problem of systems is how to find the optimal
allocation strategy such that the performance of the system be optimal in the
sense of some stochastic orders. In view of the usual stochastic order and in
order to maximize the system reliability, an algorithm is proposed to find the
optimal redundancy allocation. We first introduce a new measure of compo-
nent importance which is useful to find the best allocation for adding m = 1
redundant component and then use it to propose our algorithm when m > 1.
This algorithm solves the optimal redundancy allocation problem and extends
the most existing results in literature for particular structures such as series,
parallel, k-out-of-n and those systems with m = 1 redundant component.

Keywords: Coherent systems, Importance measures, Optimal allocation, Re-
dundancy, Stochastic orders.
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1 Introduction

Consider a system consisting of n components in which all components and
the system are in working or failed state. The state of the system is completely
determined by the states of the components. Let φ(x1, . . . ,xn) denote the state
of the system and xi denotes the state of the ith component for i = 1, . . . ,n(xi =

1 means that the ith component is working and xi = 0 that it is not). φ is called
the system structure function. The system is coherent if φ be increasing, that
is, when the state of a component is improved, the state of the system can not
be worse, and every component be relevant for the system, that is, φ is strictly
increasing in each variable in at least a point. For details on coherent systems
refer to [1].

The use of redundancy mechanisms is an important and effective way to im-
prove the performance of the system. Two common schemes for allocating
the redundant components to the system, are called active and standby redun-
dancies. In the former, the redundant components are put in parallel to the
original components of the system, while in later, they start working immedi-
ately after component failures. In fact the use of redundancy means that, the
improvement of system performance via the improving of its components. It
is therefore important to study the effect of improving system components in
improvement of the whole system.

Suppose m is the number of redundant components and ri is the number of
redundant components added to the ith original system component. Then the
vector r = (r1, . . . ,rn) where ∑

n
1 ri = m is called an allocation policy. The rele-

vant and essential problem related to the redundancy in systems is how to find
the optimal allocation strategy such that the performance of the system be op-
timal in the sense of some stochastic orders. In this paper the usual stochastic
order is considered and therefore we want to find the optimal allocation strat-
egy such that the system reliability be maximized. Although the redundancy
allocation to original system components is a common technique to improve
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system reliability but, allocation of redundant components is not an easy task
and must be considered properly with respect to environmental working condi-
tions and possible restrictions such as cost, volume and weight. Therefore, the
problem of finding optimal allocations is important. In last three decades the
redundancy allocation problem has been widely studied by many authors. The
most existing studies are usually concerned to particular structures such as se-
ries, parallel and k-out-of-n systems or coherent systems with m = 1 redundant
component.

It seems that this subject was considered first by [2]. They considered a se-
ries system with n independent and identical (iid) components having com-
mon distribution F and m iid active redundant components with common dis-
tribution G and showed that the strategy of balanced allocation, that is the
allocation with |ri− r j|≤ 1, for all i 6= j is optimal and maximizes the sys-
tem reliability. Obviously the balanced allocation is not unique unless m/n

be an integer. In this case the only balanced allocation is the equal allocation
r∗ = (m/n, . . . ,m/n). In view of the hazard rate order, [8] showed that the
balanced allocation optimizes the failure rate of the system if F = G, that is
the system failure rate is minimized. [7] obtained a stronger result and showed
that if lnG/lnF is an increasing function then the balanced allocation is opti-
mal and minimizes the failure rate of the system.

We recall that a random variable X with distribution function FX = 1− F̄X is
said to be less than Y in usual stochastic order and denoted by X ≤st Y , if
F̄X(t)≤ F̄Y (t) for all t. Also when X and Y are absolutely continuous random
variables then X is said to be less than Y in hazard rate order and denoted by
X ≤hr Y , if hX(t) = fX(t)/F̄X(t) ≥ hY (t) for all t, where F̄ , f and h stand for
survival, density and hazard(failure) rate functions, respectively. It is known
that if X ≤hr Y then X ≤st Y .

In view of some other stochastic orders [11]. considered the optimal allocation
policy in a series system with m = 1 redundancy. ([5, 6]) considered the opti-
mal allocation of redundancies in series and parallel systems with dependent
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components when m ≤ 2. [10] considered k-out-of-n systems with indepen-
dent components and m iid redundant components. ([3, 4]) considered the
optimal allocation in active redundancy for some coherent systems containing
symmetric components.

In a fixed point of time consider a coherent system with n components and
structure φ and let

h(p) = E[φ(X)] = P(φ(X) = 1)

be the reliability function of the system where X=(X1, . . . ,Xn), p=(p1, . . . , pn)

and pi = P(Xi = 1) is the reliability of ith component.
In during of the time we denote the system lifetime by T =Φ(T1, . . . ,Tn) where
Ti is the lifetime of ith component. We assume that the system components are
independent, that is Xi’s or Ti’s are independent random variables. Also assume
that Ti’s are nonnegative and absolutely continuous. The reliability function of
the system at time t is denoted by

F̄T (t) = P(T > t) = h(pt) = h(p1(t), . . . , pn(t))

where pi(t) = F̄i(t) = P(Ti > t).

The rest of this paper is organized as follows: In Section 2 we introduce a new
measure of component importance which is an extension of the well known
Birnbaum measure of importance and is useful in both active and standby re-
dundancies problems in coherent systems with m = 1 redundant component.
Using this an algorithm is proposed to find the optimal allocation when m > 1
in Sections 3.

2 A new measure of component importance useful in active and standby

redundancies

In this section, we consider a coherent system with n independent components
and study the effect of an redundant component on the system reliability and
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then give our new measure of component importance which is useful in redun-
dancy problems of coherent systems, considered in the next section. For the
sake of completeness we first give the effect of improving one component on
the system reliability, a result obtained by [9].

Lemma 2.1. Let ∆i denote the increase of system reliability due to the increas-
ing of ith component reliability as much as δi. Then

∆i = δiIB(i) (1)

where

IB(i) = P(φ(1i,X)−φ(0i,X) = 1) = h(1i,p)−h(0i,p) =
∂h(p)

∂ pi

is the well known Birnbaum importance measure of the ith component.

Regarding the above lemma we now consider three cases as follows.
Case 1. If δi = δ , i = 1, . . . ,n, that is the improvement of all components be
the same, then from (2.1) we see that in view of the Birnbaum measure of
importance, improvement of the most important component causes the largest
increasing in system reliability. In other words the Birnbaum measure of im-
portance is crucial to find the best component in order to increase the system
reliability. This is not case if δi 6= δ and therefore a new measure of impor-
tance is needed. One may use ∆i = δiIB(i) as the new measure of importance
for component i. But it is not applicable in redundancy allocation problem as
∆i depends on the arbitrary value δi whereas in redundancy problem δi depends
on the redundant component. It is explained in the following case.

Case 2. Suppose we want to allocate an active redundancy component with
reliability p to a single system component. We assume that it is independent
of all original system components. The question is how to find the optimal
allocation. If we allocate it to the component i then pi will be increased to
1− (1− pi)(1− p) = 1−qiq and therefore δi = 1−qiq− pi = qi−qiq = qip.
Hence ∆i = qipIB(i). Based on this we now introduce our new measure of
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importance for component i as follow

IAR(i) = (1− pi)IB(i). (2)

AR in IAR(i) refers to active redundancy. It is a generalization of IB(i) as it
depends to pi the reliability of component i but IB(i) does not. Also note that
in this case the active component is exposed to all system components under
the same condition. Hence the optimal allocation is the component that has
the largest IAR(.).

Case 3. In this case we want to allocate one independent standby component
with reliability p and lifetime S to a single system component and find the
optimal allocation. If we allocate it to the component i with lifetime Ti then
pi will be increased to pi ∗ p. By pi ∗ p we mean F̄i ∗ F̄(t) = P(Ti + S > t),

the convolution of F̄i and F̄ , which are the reliability functions of Ti and S,
respectively. Therefore

δi = pi ∗ p− pi = P(Ti +S > t)−P(Ti > t)

and our new measure of importance for component i is

ISR(i) = (pi ∗ p− pi)IB(i). (3)

SR in ISR(i) refers to standby redundancy. Hence in this case the optimal
allocation is the component that has the largest ISR(.).

Remark 2.2. If the system components are identical, that is p1 = · · ·= pn we
then in both cases 2 and 3 have, δ1 = · · ·= δn and therefore in order to find the
optimal allocations, IAR(i) and ISR(i) will be equivalently reduced to IB(i).
Also note that in case 3 ISR(i) is dependent to the lifetime distributions of
original and spare components whereas in case 2 this is not case for IAR(i).
To obtain IB(i) in case 3, it is sufficient to replace pi in case 2 by pi(t) =P(Ti >

t) = F̄i(t).
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3 An algorithm for optimal Redundancy allocation

In this section we consider the active and standby redundancy problems in
a coherent system consisting of n independent components equipped with m

independent redundant components. Assume that the original and spare com-
ponents are also independent. We want to find the optimal allocation in the
sense of usual stochastic order.

We also assume that the functional form of the system reliability function
h(p) = h(p1, . . . , pn), is known. Without loss of generality we assume that
p′1≥ ·· · ≥ p′m where p′j is the reliability of the jth redundant component. Note
that if we want to add the redundant component j to the original component i in
fact ∆i = p′j(1− pi)IB(i) has the largest value and since p′1≥ ·· · ≥ p′m therefore
the redundant components should be added to the system components consec-
utively, first the redundant component 1 and then redundant component 2, etc.
Therefore it is enough in each stage, that we first find the original component
with largest value of IAR(i) = (1− pi)IB(i) and then add the current redun-
dant component to it. In other words the measure of IAR(i) = (1− pi)IB(i) is
crucial to find the optimal allocation.

Now based on the measure of IAR(i) given in section 2 we propose the fol-
lowing algorithm to find the optimal allocation in case of active redundancy.

An algorithm for optimal allocation in active redundancy

Input: p1, . . . , pn, m, p′1 ≥ ·· · ≥ p′m and h(p1, . . . , pn).

Output: The optimal allocation r∗ = (r1, . . . ,rn).

Step 0. Put I = 1 and ri = 0 and q′j = 1− p′j for i = 1, . . . ,n and j = 1, . . . ,m.

Step 1. Compute IB(i)=
∂h(p)
∂ pi

, qi = 1− pi, and IAR(i)= qiIB(i) for i= 1, . . . ,n.

Step 2. Determine the i∗ such that

IAR(i∗) = max{IAR(i), i = 1, . . . ,n}.

Step 3. Put ri∗ = ri∗+ 1 and pi∗ = 1− q′Iqi∗ and update the system reliability
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function h(p1, . . . , pn).

Step 4. If I = m, Stop. Otherwise put I = I +1 and Goto Step 1.

To illustrate how the above algorithm works see the following example.

Example. Consider the following series-parallel system.

1

2

3

Suppose p1 = 0.4, p2 = 0.8 and p3 = 0.3 Also let m= 4 and for simplicity sup-
pose p′1 = · · ·= p′4 = 0.5. We follow the above algorithm step by step to find
the optimal allocation such that the reliability of the system be maximized. It
is known that for this system we have h(p1, p2, p3) = p1p2+ p1p3− p1p2p3 =

0.404. Therefore IB(1) = p2 + p3− p2p3 = 0.86, IB(2) = p1− p1p3 = 0.28
and IB(3) = p1− p1p2 = 0.08. Also IAR(1) = q1IB(1) = 0.516 and similarly
IAR(2) = 0.056 = IAR(3). We get i∗ = 1. That is the first redundant compo-
nent should be added to component 1. Hence r1 = 1 and p1 = 1−0.5×0.6 =

0.7. Using this new value of p1 we update h(p1, p2, p3) to allocate the sec-
ond redundant. We have IB(1) = 0.86, IB(2) = 0.49 and IB(3) = 0.14. Also
IAR(1) = q1IB(1) = 0.258, IAR(2) = 0.098 = IAR(3). We again have i∗ = 1
and therefore r1 = 2 and p1 = 1−qp1 = 1−0.5×0.3 = 0.85. That is the sec-
ond redundant component should be again added to component 1. Similarly in
third repetition we obtain i∗ = 1, r1 = 3 and p1 = 1−0.5×0.15 = 0.925 and
finally in last repetition have IAR(1) = 0.0645, IAR(2) = IAR(3) = 0.1295.
Therefore i∗ = 2 or 3. That is two allocations r∗1 = (3,1,0) and r∗2 = (3,0,1)
are both optimal. We note that although the optimal allocation is not unique
but one can simply verify that both of r∗1 and r∗2 lead to the unique maximum
value of h(p1, p2, p3) which is equal to 0.86025. This holds true in general.

Remark. One can simply obtain an algorithm to find the optimal allocation
in case of standby redundancy if IAR(i) be replaced by ISR(i) in the above
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algorithm. As mentioned before we note that ISR(i) is a time dependent mea-
sure and the lifetime distributions of original and redundant components are
needed.
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Abstract: In stress-strength models, consider a system which has k inde-
pendent strength components and each component is constructed by a pair
of dependent elements. These elements (X1,Y1),(X2,Y2), . . . ,(Xk,Yk) fol-
low a discrete bivariate proportional hazard rate family and each element
is exposed to a common random stress T which follows a discrete univari-
ate proportional hazard rate family. The system is regarded as operating
only if at least s out of k (1≤ s≤ k) strength variables exceed the random
stress. In this paper, based on a general form of discrete lifetime distribu-
tion in proportional hazard rate models, the estimation of multicomponent
stress-strength reliability parameter is studied. Finally, as an example the
model have studied in a new bivariate Gemometric distribution.

Keywords: Discrete proportional hazard rate model (DPHM), Maxi-
mum likelihood estimator (MLE), Method of proportion (MP), Reliability,
Stress-strength model, Telescopic representation.

1 Introduction

Stress-strength models are one of the most important issues with many
citations in reliability and engineering. In the reliability context, the stress-
strength model can be described as an assessment of reliability of a system
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in terms of random variables X representing stress experienced by the sys-
tem and Y representing the strength of the system available to overcome
the stress. If the stress exceeds the strength, then the system will fail. Thus
R = P(X < Y ) is the reliability considering the failure mode described by
the stress-strength relationship. This main idea was introduced by [3] and
developed by [4]. Estimation of R = P(X <Y ) when the random variables
X and Y follow a specified distribution has been extensively discussed by
many authors in the literature. For a detailed survey on point and interval
estimation of stress-strength models using different approaches one can
refer [11]. [6] proposed some new approximate inferential methods for
the reliability estimation in the stress-strength model when the stress and
strength variables are independent normal random variables with unknown
means and variances. [10] studied the reliability estimation of the stress-
strength model when strength variables followed finite mixture of two pa-
rameter Lindley distribution and stress variables followed exponential dis-
tribution, Lindley distribution and finite mixture of two parameter Lind-
ley distribution, respectively. [12] derived the estimation of R = P(Y < X)

when X and Y followed three-parameter generalized Rayleigh distributions
with the same scale and location parameters but different shape parameters.

The above mentioned system is only a single-component system, but this
assumption is not enough to cope with more cases. In fact, with the de-
velopment of the science technology and manufactory technique, there
are many multicomponent systems appearing in our daily life, such as the
mouse, keyboards, IT hardware, aero-engines, and so on. It is significantly
meaningful to study the reliability of multicomponent system in stress-
strength models. Reliability analysis for a multicomponent survival stress-
strength model based on exponential distributions was studied by [13].
[5] got some conclusions about stress-strength reliability under multi-state
systems modeling, and he also studied the multicomponent form. [16, 17]
discussed the reliability of multicomponent stress-strength model based on
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generalized exponential distribution, Burr-XII distribution and two param-
eter exponentiated Weibull distribution. An n-component-standby system
stress-strength model was analyzed by [9].

Most of the works in estimation of R is based on continuous distributions
for X and Y . Estimation of R based on discrete or categorical data was
also addressed by some authors. [14] considered the estimation of R with
geometric distribution for stress and strength random variables. [18] ob-
tained MLE and UMVUE of R using negative binomial distribution. [15]
obtained the Bayes estimator of R when X and Y have independent two-
parameter geometric distribution. [1] obtained the estimator of R when the
stress and strength components are independent Poisson random variables.
[7] studied the estimation of stress-strength reliability using discrete phase
type distribution.

In this study, we combine the multicomponent stress-strength model with
a discrete bivariate distribution. We consider a system which has k statisti-
cally independent and identically distributed strength components, each of
which consists of a series system of two statistically dependent elements
exposed to a common stress. The system functions if s(1≤ s≤ k) or more
components simultaneously operate.

2 Model description

Using the method of [2] for generating bivariate distributions, we intro-
duced a general method for generating the bivariate discrete distributions.

Let X be any non-negative discrete integer valued random variable, then
the Telescopic form (denoted by X ∼ T (q,kθ )) of its pmf, cdf and relia-
bility function (RX(x) = P(X ≥ x)) for x ∈ D = {0,1,2, ...} are as follow
respectively (Rezaei et al. 2000)

pX(x) = qkθ (x)−qkθ (x+1), (1)
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FX(x) = 1−qkθ (x+1),

RX(x) = qkθ (x),

where 0 < q < 1 and θ is a parameter vector (which may contains q) and
kθ (x) =

lnF(x−1)
lnq is an increasing function of x ∈ D with kθ (0) = 0 and

kθ (∞) = ∞.

Table 1 shows the form of kθ (x) for some discrete distributions.

Table 1: Some discrete distributions in telescopic forms

Distribution of X kθ (x) PMF of X

Geometric x qx(1−q)

Discrete Weibull xθ qxθ −q(x+1)θ

Discrete Rayleigh x2

2 q
x2
2 −q

(x+1)2
2

Discrete Gompertz eθx−1 qeθx−1−qeθ(x+1)−1

Brittle-Fracture x2re−
β

x2 qx2re
− β

x2 −q(x+1)2re
− β

(x+1)2

Linear-Exponential x+ β

2α
x2 qx+ β

2α
x2 −q(x+1)+ β

2α
(x+1)2

Discrete Burr XII ln(1+ xα) qln(1+xα )−qln(1+(x+1)α )

Discrete Kumaraswamy − ln(1− xβ ) q− ln(1−xβ )−q− ln(1−(x+1)β )

Now, let X1,X2 and X3 be independent random variables with Xi ∼
T (qi,kθ ), where qi ∈ (0,1), for i = 1,2,3. Let

Z1 = min(X1,X3) and Z2 = min(X2,X3).

Hence, we define the random bivariate vector (Z1,Z2). We use the nota-
tion (Z1,Z2) ∼ BV T (q1,q2,q3,kθ ). The reliability function and joint pmf
of (Z1,Z2), are given by

RZ1,Z2(z1,z2) = P(Z1 ≥ z1,Z2 ≥ z2) = P(X1 ≥ z1,X2 ≥ z2,X3 ≥ w)

= RX1(z1)RX2(z2)RX3(w)

= qkθ (z1)
1 qkθ (z2)

2 qkθ (w)
3 ,

P(Z1 = z1,Z2 = z2) = RZ1,Z2(z1,z2)−RZ1,Z2(z
+
1 ,z2)−RZ1,Z2(z1,z+2 )+RZ1,Z2(z

+
1 ,z

+
2 )

= qkθ (z1)
1 qkθ (z2)

2 qkθ (w)
3 −qkθ (z1+1)

1 qkθ (z2)
2 qkθ (w′)

3
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− qkθ (z1)
1 qkθ (z2+1)

2 qkθ (w′′)
3 +qkθ (z1+1)

1 qkθ (z2+1)
2 qkθ (w′′′)

3

where w = max(z1,z2), w′ = max(z1 + 1,z2), w′′ = max(z1,z2 + 1) and
w′′′ = max(z1 +1,z2 +1) for (z1,z2) ∈ D2.

It is easy to show that if (X ,Y ) ∼ BV T (q1,q2,q3,kθ ), then the marginal
distributions are distributed as X ∼ T (q1q3,kθ ) and Y ∼ T (q2q3,kθ ). More-
over, the distribution of min(X ,Y ) is T (q1q2q3,kθ ).

Notice that the random variables X and Y become statistically indepen-
dent as q3 −→ 1− and the correlation between X and Y increases as q3

decreases. Hence, q3 can be regarded as a correlation control parameter.

We consider a system which has k statistically independent and identically
distributed strength components and each component is constructed by a
pair of statistically dependent elements. The system is subjected to a com-
mon stress and works if at least s (1≤ s≤ k) components simultaneously
operate; and a component is alive only if the weakest elements is operating.

We assume the strength vectors are distributed as (Xi,Yi) ∼
BV T (q1,q2,q3,kθ ) and a common stress variable has distributed as
T ∼ T (p,kθ ). Let Zi = min(Xi,Yi), then Zi ∼ T (q,kθ ), i = 1, . . . ,k where
q = q1q2q3. In terms of these random variables, the system is working if at
least s (1 ≤ s ≤ k) of the Zi strength variables operate when the common
stress variable T is carried out.

Let T,Z1, . . . ,Zk be statistically independent, gT (t) be the pmf of T and
RZ(z) be the common reliability function of Z1, . . . ,Zk. The reliability in a
multicomponent stress-strength model is given by

Rs,k = P(at leasts of the(Z1, . . . ,Zk) is more or equal T )

=
k

∑
i=s

∞

∑
t=0

(
k
i

)
P(Z ≥ t)iP(Z < t)k−iP(T = t)

=
∞

∑
t=0

gT (t)
k

∑
i=s

(
k
i

)
RZ(t)i(1−RZ(t))k−i

= ET (P(Bt ≥ s)) = ET (RBT (s)),
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where Bt ∼ Binomial(k,RZ(t)). In our case, where (Xi,Yi) ∼
BV T (q1,q2,q3,kθ ) and T ∼ T (p,kθ ), Rs,k is given by

Rs,k =
k

∑
i=s

∞

∑
t=0

(
k
i

)
qikθ (t)(1−qkθ (t))k−i(pkθ (t)− pkθ (t+1)), (2)

where q = q1q2q3.

In another scenario, we consider a system which has k statistically indepen-
dent and identically distributed strength components and each component
is constructed by two random variables Y1 and Y2 which are satisfied the
discrete proportional hazard rate model (DPHM) with resilience parame-
ter β > 0. i.e. for i = 1,2; RYi(t) = [R0(t)]β for t = 0,1, . . ., where R0(t) is
the reliability function of the baseline distribution. Therefore the reliability
function of the random variable Z = min(Y1,Y2) is RZ(t) = [R0(t)]2β . So, if
the stress variable, T is also stisfied the DPHM with resilience parameter
α > 0 (i.e. RT (t) = [R0(t)]α), we have,

Rs,k = P(at leasts of the(Z1, . . . ,Zk) is more or equal T )

=
k

∑
i=s

∞

∑
t=0

(
k
i

)
[R0(t)]2β i(1− [R0(t)]2β )k−i(R0(t)α −R0(t +1)α)

3 Estimations of the R

In this section two estimation for R is presented.

3.1 MLE of R

To obtain the MLE of Rs,k, suppose that n systems are put on experiment
and we have the following potential data (Xi1,Yi1),(Xi2,Yi2), . . . ,(Xik,Yik)

and Ti, i = 1, . . . ,n, but the actual observed data are Zi1,Zi2, . . . ,Zik and Ti ,
i = 1, . . . ,n. Suppose that (Xi,Yi)∼ BV T (q1,q2,q3,kθ ), Zi = min(Xi,Yi)∼
T (q,kθ ); where q = q1q2q3 and T ∼ T (p,kθ ), Then, the likelihood func-
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tion of these observed samples is given as

L(q, p|kθ ,Z, t) =
n

∏
i=1

(
k

∏
j=1

pZ(zi j)

)
pT (ti)

=
n

∏
i=1

(
k

∏
j=1

(RZ(zi j)−RZ(zi j +1))

)
(RT (ti)−RT (ti +1))

and in DPHM in which, RZ(u) = [R0(u)]2β , RT (u) = [R0(u)]α and R0(u) =

q′kθ (u), where q′ and θ are known parameters, we have,

L(α,β |kθ ,Z, t) =
n

∏
i=1

(
k

∏
j=1

(R0(zi j)
2β −R0(zi j +1)2β )

)
(R0(ti)α −R0(ti +1)α)

=
n

∏
i=1

(
k

∏
j=1

q′2βkθ (zi j)−q′2βkθ (zi j+1)

)
(q′αkθ (ti)−q′αkθ (ti+1)

)

and the log-likelihood function is

l(α,β |kθ ,Z, t) =
n

∑
i=1

k

∑
j=1

ln(q′2βkθ (zi j)−q′2βkθ (zi j+1)
)+

n

∑
i=1

ln(q′αkθ (ti)−q′αkθ (ti+1)
).

So, the MLE of α and β can be obtained by solution of the following
equations,

n

∑
i=1

kθ (ti)q′
αkθ (ti)

pT (ti)
=

n

∑
i=1

kθ (ti +1)q′αkθ (ti+1)

pT (ti)
n

∑
i=1

k

∑
j=1

kθ (zi j)q′
2βkθ (zi j)

pZ(zi j)
=

n

∑
i=1

k

∑
j=1

kθ (zi j +1)q′2βkθ (zi j+1)

pZ(zi j)

3.2 Method of Proportions

In discrete distributions [8] have proposed a method called ”method of pro-

portions” for estimation the parameters. Based on this method in DPHM
we have,

pZ(0) = p(Z = 0) = 1−q′2βkθ (1). (3)

Therefore if N0 be the number of zero’s in the sample of z1, . . . ,zn, then the
proportion N0

n estimates the probability pZ(0), so β̂mp as the estimator of
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β , can be expressed in a simple form of

β̂mp =
1

2kθ (1)
logq′(1−

N0

n
), (4)

and in similar way the estimator of α , α̂mp, can be obtained as follow,

α̂mp =
1

kθ (1)
logq′(1−

N′0
n
), (5)

where N′0 is the number of zero’s in the sample of ti; i = 1, . . . ,n.

4 Results for Geometric distribution

First of all, we define a new three-paramtric bivariate Geometric distribu-
tion as follow.

Definition 4.1. The (X ,Y ) has three-parameter bivariate Geometric distri-
bution and denoted by (X ,Y ) ∼ BGeo(q1,q2,q3), if it has the following
reliability and joint pmf as follow,

RX ,Y (x,y) = qx
1qy

2qmax(x,y)
3 =

{
(q1q3)

xqy
2 x≥ y

qx
1(q2q3)

y x < y

pX ,Y (x,y) =


(qx

1−qx+1
1 )

(
(q2q3)

y− (q2q3)
y+1
)

x < y

(q1q3)
xqy

2− (q1q3)
x+1qy

2− (q2q3)
y+1qx

1 +(q1q3)
x+1qy+1

2 x = y

(qy
2−qy+1

2 )
(
(q1q3)

x− (q1q3)
x+1
)

x > y

Therefore, using (2), Rs,k is as follow,

Rs,k =
k

∑
i=s

∞

∑
t=0

(
k
i

)
qit(1−qt)k−i(pt− pt+1),

where q = q1q2q3, and in DPHM, we have

Rs,k =
k

∑
i=s

∞

∑
t=0

(
k
i

)
q′2β ti

(1−q′2β t
)k−i(q′αt−q′α(t+1)

)

Also, the MLE of α and β can be obtianed by the following equations,
n

∑
i=1

tiq′
αti

pT (ti)
=

q′

1−q′
n

∑
i=1

q′αti

pT (ti)
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n

∑
i=1

k

∑
j=1

tiq′
αti

pT (ti)
=

q′

1−q′
n

∑
i=1

q′αti

pT (ti)

Future of research

Among the topics that can be done in the future of this research, we can
mention the comparison of MLE and MP estimators as well as the calcu-
lation of Bayesian estimators and confidence interval.

References

[1] Barbiero, A. (2013), Inference on reliability of Stress-Strength mod-
els for Poisson data. Journal of Quality and Reliability Engineering.
Volume 2013, Article ID 530530, 8 pages.

[2] Barreto-Souza, W. and Lemonte, A.J. (2013), Bivariate Kumaraswamy
distribution: properties and a new method to generate bivariate classes.
Statistics 47(6):1321-1342.

[3] Birnbaum, Z.W. (1956), On a use of Mann-Whitney statistics. In: Pro-
ceedings of the 3rd Berkeley symposium on mathematical statistics and
probability vol 1, pp 13-17.

[4] Birnbaum, Z.W. and McCarty, B.C. (1958), A distribution-free upper
confidence bounds for Pr(Y < X) based on independent samples of X
and Y . The Annals of Mathematical Statistics, 29(2):558-562.

[5] Erylmaz, S. (2011), A new perspective to stress-strength models. An-

nals of the Institute of Statistical Mathematics, 63(1): 101-115.

[6] Guo, H. and Krishnamoorthy, K. (2004), New approximate inferential
methods for the reliability parameter in a stress-strength model: the
normal case. Communication in Statistics- Theory and Methods, 33(7):
1715-1731.



The 7th Seminar on Reliability Theory and its Applications 199

[7] Joby, K.J., Drisya, M. and Manoharan, M. (2020), Estima-
tion of stressstrength reliability using discrete phase type distribu-
tion, Communications in Statistics - Theory and Methods, DOI:
10.1080/03610926.2020.1749663.

[8] Khan, M.S.A., Khalique, A. and A. M. Abouammoh (1989), On esti-
mating parameters in a discrete Weibull distribution, IEEE Transaction

On Reliability, 38, 3, 348-350.

[9] Khan, A.H. and Jan, T.R. (2014), Estimation of multi component sys-
tems reliability in stress-strength models. Journal of Modern Applied

Statistical Methods, 13(2): 389-398.

[10] Khan, A.H. and Jan, T.R. (2015), Estimation of stress-strength reli-
ability model using finite mixture of two parameter Lindley distribu-
tions. Journal of Statistics Applications and Probability, 4(1): 147-
159.

[11] Kotz, S., Lumelskii,Y. and Pensky, M. (2003), The stressstrength

model and its generalizations: theory and applications. World Scien-
tific, Singapore.

[12] Kundu, D. and Raqab, M.Z. (2015), Estimation of R = P[Y < X ] for
three-parameter generalized Rayleigh distribution. Journal of Statisti-

cal Computation and Simulation, 85(4): 725-739.

[13] Kunchur, S.H. and Munoli, S.B. (1993), Estimation of reliability for
a multicomponent survival stress-strength model based on exponen-
tial distributions. Communications in Statistics-Theory and Methods,
22(3): 769-779.

[14] Maiti, S.S. (1995), Estimation of P(X ≥ Y ) in the geometric case.
Journal of the Indian Statistical Association, 33, 87-91.

[15] Maiti, S.S. and Murmu, S. (2015), Bayesian estimation of reliabil-
ity in two-parameter geometric distribution. Journal of Reliability and

Statistical Studies 8:41-58.



Khorashadizadeh, M. 200

[16] Rao, G.S., Aslam, M. and Kundu, D. (2015), Burr-XII distribution
parametric estimation and estimation of reliability of multicompo-
nent stress-strength. Communications in Statistics-Theory and Meth-

ods, 44(23): 4953-4961.

[17] Rao, G.S., Aslam, M. and Arif, O.H. (2016), Estimation of reliability
in multicomponent stress-strength based on two parameter exponenti-
ated Weibull distribution. Communications in Statistics - Theory and

Methods, 46(15): 7495-7502.

[18] Sathe, Y.S. and Dixit, U.J. (2001), Estimation of P[X ≤Y ] in the neg-
ative binomial distribution. Journal of Statistical Planning and Infer-

ence, 93, 83-92.



The 7th Seminar on Reliability Theory and its Applications

E-Bayesian estimation and its E-Posterior risk for the reliability
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Abstract: In this paper, we deal with E-Bayesian estimation and its E-
Posterior risk for the reliability function derived from the exponential dis-
tribution under the scaled squared error loss function. The E-posterior
risk (expected posterior risk) is used to measure the estimated error based
on the E-Bayesian estimation. E-Bayesian estimators and formulas of E-
posterior risk are derived. A Monte Carlo simulation is performed for com-
parison of the proposed estimators.

Keywords: E-Bayesian estimation, E-Posterior risk, Exponential distribu-
tion, Reliability function.

1 Introduction

The exponential distribution is an important distribution in the field of life
testing and reliability theory. Consider that X denotes the time-to-failure
of a specific device which has an exponential Exp(θ) distribution with
probability density function (p.d.f.) given by

f (x|θ) = θe−θx, x > 0, θ > 0, (1)
1Naghizadeh Qomi, M.: m.aghizadeh@umz.ac.ir
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where θ represents the failure rate. The reliability (survival function) is
given by

R(t) = P(X > t) = e−θ t . (2)

Suppose that n items from an exponential distribution are placed on life test
and a sample X = (X1, ...,Xn) is obtained. Taking S = ∑

n
i=1 Xi, the maxi-

mum likelihood estimator (MLE) of R = R(t) based on X is given by

R̂ML = e−
nt
S .

Bayesian approachs in statistical problems require defining a prior distri-
bution over the parameter space and loss function. Many Bayesian believe
that just one prior can be elicited. In practice, the prior knowledge is vague
and any elicited prior distribution is only an approximation to the true one.
So, we elect to restrict attention to a given flexible family of priors. Various
solutions to this problem have been proposed. One of the proposed solution
is E-Bayesian approach, which was first introduced by [1]. The E-Bayesian
estimator of the unknown parameter is the expectation of the Bayesian es-
timation on the basis of distribution of the hyperparameter(s), for more
details, see ([2, 3, 4]), [6] and [7]. The E-Posterior risk of E-Bayesian
estimation is the the expectation of the E-Bayesian estimation over the hy-
perparameter(s) which is proposed by [5] for the reliability function in a
binomial distribution.

In this paper, we consider the problem of E-Bayesian estimation of the
reliability function and its E-posterior risk derived from the exponential
distribution using the scaled squared error loss (SSEL) function

L(R, R̂) =
(R− R̂)2

Rk , k = 0,1,2, (3)

where R̂ is an estimator of R. In section 2, we find the Bayesian estima-
tors for the reliability function under the loss function (3). In section 3, we
obtain the E-Bayesian estimators for the reliability function using a prior
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distribution of hyperparameter. The formulas of E-Posterior risk are de-
rived in section 4. A Monte Carlo simulation is used for comparison of
E-Bayesian estimators of the reliability function in section 5.

2 Bayesian estimators of reliability function

If x = (x1,x2, ...,xn) be the sample observations from the exponential dis-
tribution (1), then the likelihood function is given by

L(θ |x) = Π
n
i=1θe−θxi = θ

ne−θS.

If we take conjugate prior of θ , namely Exp(b), with p.d.f.

π(θ |b) = be−bθ , θ > 0, b > 0. (4)

Then, the posterior distribution of θ given x is Gamma(n+ 1,S+ b) with
p.d.f.

π(θ |x) = (S+b)n+1

Γ(n+1)
θ

ne−(S+b)θ , θ > 0. (5)

In the following Lemma, we present the Bayesian estimation of R under
the loss function (3).

Lemma 2.1. (i) Under the SSEL function (3), The Bayesian estimate of R

based on observation x is given by

R̂Bk(x) =
E[R1−k | x]
E[R−k | x]

. (6)

(ii) Let x = (x1,x2, ...,xn) be the sample observations from the exponential

distribution given in (1), the prior distribution of θ is Exp(b) given in (4)

and s = ∑
n
i=1 xi. Then, the Bayesian estimation of R is given by

R̂Bk(x) = (
S+b− tk

S+b+ t− tk
)n+1, k = 0,1,2. (7)

Proof. (i) The posterior risk of R̂ based on observations x = (x1, ...,xn) can
be expressed as

ρ(π, R̂) = E[L(R, R̂)|x]
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= E[
(R− R̂)2

Rk |x]
= E[R2−k|x]−2R̂E[R1−k|x]+ R̂2E[R−k|x]. (8)

The Bayes estimate of R based on observation x is any estimate R̂Bk(x) that
minimizes the posterior risk (8) w.r.t. R̂, which is given by

R̂Bk(x) =
E[R1−k | x]
E[R−k | x]

. (9)

(ii) Using the posterior density given in (5), we obtain

E[R1−k|x] = E[e−θ t(1−k)|x] = (
S+b

S+b+ t− tk
)n+1, (10)

and

E[R−k|x] = E[eθ tk|x] = (
S+b

S+b− tk
)n+1. (11)

Therefore, the Bayesian estimator of R under the loss function (3) is given
by

R̂Bk(x) =
E[R1−k|x]
E[R−k|x]

= (
S+b− tk

S+b+ t− tk
)n+1. (12)

Remark 2.2. It can be shown that the following sequential relationship
hold between the Bayesian estimators of R

R̂B2(x)< R̂B1(x)< R̂B0(x)

3 E-Bayesian estimation

Information on the appropriate prior is often inadequate to unambiguously
specify a prior distribution. The problem of expressing uncertainty regard-
ing prior information can be solved by using a class of prior distributions.

E-Bayesian inference deals with such a problem by constructing methods
which are stable to such a lack of information.
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Consider a prior π(θ |b) for θ with hyperparameter b. According to [1], b

should be selected to guarantee that π(θ |b) is a decreasing function of θ . If
we take the conjugate prior (4), hyperparameter b should be in the ranges
b > 0, due to dπ(θ |b)

dθ
< 0. Prior distribution with thinner tail would make

worse robustness of Bayesian distribution. Accordingly, b should not too
big. It is better to choose 0 < b < c (c > 0, and c is a constant).

Suppose that the prior distributions of b are uniform distribution in (0,c).
Therefore, the prior distribution of b is given by

π(b) =
1
c
, 0 < b < c. (13)

The definition of E-Bayesian estimation of Reliability is described using
the definition of [1] as follows.

Definition 3.1. The E-Bayesian estimation of the reliability function, R, is
the expectation of the Bayesian estimation of R for the hyperparameter b

and is defined as

R̂EBk(x) =
∫

D
R̂Bk(x)π(b)db = E(R̂Bk(x)), (14)

where π(b) is the prior density function of hyperparameter b and D is the
domain of b.

In the following theorem, we obtain the E-Bayesian estimators of R under
the loss function (3) and the prior distribution (13).

Theorem 3.2. Let x = (x1,x2, ...,xn) be the sample observations from the

exponential distribution. Then, the E-Bayesian estimator of R correspond-

ing to the prior given in (13) under the loss function (3) are equal to

R̂EBk(x) =
1
c

n+1

∑
i=0

(
n+1

i

)
(−t)i

1− i
[(S+ c+ t− tk)1−i− (S+ t− tk)1−i]. (15)

Proof. For prior π(b), the E-Bayesian estimator of R under the loss func-
tion (3) is given by

R̂EBk(x) =
∫ c

0

1
c
[

S+b− tk
S+b+ t− tk

]n+1db
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=
1
c

∫ S+c+t−tk

S+t−tk
[1− t

y
]n+1dy

=
1
c

∫ S+c+t−tk

S+t−tk

n+1

∑
i=0

(
n+1

i

)
(
−t
y
)idy

=
1
c

n+1

∑
i=0

(
n+1

i

)
(−t)i

∫ S+c+t−tk

S+t−tk
y−idy

=
1
c

n+1

∑
i=0

(
n+1

i

)
(−t)i

1− i
[(S+ c+ t− tk)1−i− (S+ t− tk)1−i],

where y = S+b+ t− tk. which ends the proof.

4 E-Posterior risk of Bayesian estimators

[5] proposed the definition of E-posterior risk to measure the estimated
error of E-Bayesian estimators.

Definition 4.1. The E-Posterior risk of R̂Bk is the expectation of the pos-
terior risk of the Bayesian estimator for the hyperparameter b which is
defined as

EP(R̂EBk) =
∫

D
ρ(π, R̂Bk)π(b)db = E(ρ(π, R̂Bk)).

In the following theorem, we obtain the E-Posterior risk under the loss
function (3) and prior distributions given in (13).

Theorem 4.2. Let x = (x1,x2, ...,xn) be the sample observations from the

exponential distribution. Therefore, we have:

(i) The posterior risk of R̂Bk(x) under the loss function (3) is given by

ρ(π, R̂Bk) = [
S+b

S+b+2t− kt
]n+1− [(S+b)(S+b− tk)]n+1

[S+b+ t− kt]2(n+1) . (16)

(ii)The E-Posterior risk of R̂Bk under the loss function (3) is given by

EP(R̂EBk) =
1
c

∫ c

0
[

S+b
S+b+2t− kt

]n+1− [(S+b)(S+b− tk)]n+1

[S+b+ t− kt]2(n+1) db. (17)



Kiapour, A. and Naghizadeh Qomi, M. 207

Proof. (i) From (8), the posterior risk of R̂Bk(x) under the loss function (3)
is given by

ρ(π, R̂Bk) = E[R2−k|x]−2R̂BkE[R1−k|x]+ (R̂Bk)2E[R−k|x]

Using the relations (3) and (11) and also

E[R2−k|x] = [
S+b

S+b+ t(2− k)
]n+1.

we have

ρ(π, R̂Bk) = [
S+b

S+b+ t(2− k)
]n+1−2[

(S+b− tk)(S+b)
(S+b+ t− tk)(S+b+ t(1− k))

]n+1

+ [
S+b− tk

S+b+ t− tk
]2(n+1)[

S+b
S+b− tk

]n+1

= [
S+b

S+b+2t− kt
]n+1− [(S+b)(S+b− tk)]n+1

[S+b+ t− kt]2(n+1) .

(ii) For prior distribution π(b), the E-posterior risk of R̂Bk under the loss
function (3) is given by

EP(R̂EBk) =
∫ c

0
ρ(π, R̂Bk)π(b)db

=
1
c

∫ c

0
{[ S+b

S+b+2t− kt
]n+1− [(S+b)(S+b− tk)]n+1

[S+b+ t− kt]2(n+1) }db.

5 Simulation study

In this section, we perform a Monte Carlo simulation for comparison of
the E-Bayesian estimators of reliability function R and its E-Posterior risk.
For this purpose, we generate sequences n of independent random samples
from the exponential distribution with θ = 2. If we consider t = 1, then the
true value of reliability function is R = e−θ t = 0.1353.

The performance of estimates of reliability function has been compared
for repeated N = 10000 times simulation runs in terms of R̂EBk, k = 0,1,2
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and EP(k) = EP(R̂EBk), k = 0,1,2, for selected values of c = 0.5,1,3,5
and n = 20,40,70. The results are summarized in Table 1. From Table 1
we conclude that:

1. The following relationship can be observed between the values of
E-Bayesian estimates:

R̂EB2 < R̂EB1 < R̂EB0.

2. The values EP(R̂EBk), k = 0,1,2 have the following relationship

EP(R̂EB0)< EP(R̂EB1)< EP(R̂EB2),

which suggests that, if the E-Posterior risk is used as an evaluation
measure, then R̂EB0 is superior to R̂EB1 and R̂EB1 is superior to R̂EB2.

3. The values of EP(R̂EBk), k = 0,1,2 decreases as the sample size in-
crease.

Table 1: Results of E-Bayesian estimates and its E-Posterior risk.

n c R̂EB0 R̂EB1 R̂EB2 EP(0) EP(1) EP(2)

20 0.5 0.1447301 0.120392 0.096938 0.003543 0.024337 0.246662

1 0.150884 0.126442 0.102725 0.003681 0.024442 0.234651

3 0.175418 0.150941 0.126683 0.004187 0.024477 0.195971

5 0.199378 0.175287 0.151084 0.004607 0.024091 0.168000

40 0.5 0.142985 0.130169 0.117456 0.001835 0.012816 0.110700

1 0.146197 0.133369 0.120626 0.001874 0.012828 0.107904

3 0.159030 0.146203 0.133397 0.002023 0.012827 0.098000

5 0.171766 0.159006 0.146217 0.002159 0.012759 0.089764

70 0.5 0.138614 0.131096 0.123597 0.001042 0.007517 0.060600

1 0.140495 0.132974 0.125470 0.001056 0.007520 0.059730

3 0.148016 0.140496 0.132980 0.001109 0.007519 0.056487

5 0.155515 0.148010 0.140498 0.001161 0.007504 0.053579
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Abstract: Suppose that a system is affected by a sequence of shocks that
occur randomly over time, and δ1, δ2, η1 and η2 are critical levels such that
0 < δ1 < δ2 and 0 < η1 < η2. In this paper, a new mixed δ -shock model
is introduced for which the system fails with a probability, say θ1, when
the time between two consecutive shocks lying in [δ1,δ2], and the system
fails with a probability, say θ2, when the magnitude of a shock lying in
[η1,η2]. The system fails with probability 1, as soon as the interarrival time
between two successive shocks is less than δ1 or a shock with magnitude
greater than η2 occurs. Under this model, the corresponding conditional
distributions which is needed to determine the survival function is derived.

Keywords: δ -shock models, Shock models, Survival function.

1 Introduction

Different types of the shock models have been used in the reliability theory.
In the mixed shock models, two or more types of classic shocks affect the
performance of the system (for example, mixed of extreme shock model
and δ -shock model). The mixed shock models are studied by [12], [1], [3],

1Lorvand, H.: lorvandhamed@iut.ac.ir
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[11], [9], [6], [7], [8]. [4] studied the behavior of a new system, in which
the system fails, when a shock with magnitude bigger than c2 is entered on
the system and he let the system working by less performance if the magni-
tude of the shock is in (c1,c2), for c1 < c2. [11] studied reliability modeling
for systems subject to dependent competing risks considering the impact
from a new generalized mixed shock model. The work of [9] is extended
for the multi-state system by [6], where three main reasons for the failure
of system are considered: the number of times between two consecutive
shocks which are in [δ1,δ2] is k, a time between two consecutive shock is
less than δ1 and finally, a shock with magnitude greater than γ is entered to
the system. Recently, ([7, 8] ) studied a system, in which the system fails
when the number of times between two consecutive shocks which are less
than δ is k, or the magnitude of the shock is greater than γ . According to
the model introduced by [5], for two fixed critical values d1 and d2 such
that d1¡d2, the system under concern fails upon the occurrence of k con-
secutive shocks of size at least d1 or a single large shock of size at least d2.
The run and extreme shock models are mixed in this model.
In this paper, we let the entered shocks to the system have a random mag-
nitude and the time between two consecutive shocks are also random. The
corresponding conditional distributions which is needed to determine the
survival function is then provided.

2 The behavior of the systems lifetime

Let the entered shocks to the system have a random magnitude. We also
assume that the time between two consecutive shocks are random. If the
time between two successive shocks lying in [δ1,δ2], for 0¡δ1¡δ2, we let
the system fails with probability θ1 (0≤ θ1 ≤ 1) and if the magnitude of a
shock lying in [η1,η2], for 0¡η1¡η2, we let the system fails with probability
θ2 (0≤ θ2 ≤ 1). The system fails with probability 1, as soon as the interar-
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rival time between two successive shocks is less than δ1 or the magnitude
of a shock is larger than η2. Also, we let, the system does not fail when
the interarrival time between two successive shocks is greater than δ2 or
the magnitude of shock is less than η1. Corresponding to each interarrival
time in [δ1,δ2], we introduce a random variable Y obeying Bernoulli distri-
bution with probability of success θ1and corresponding to each magnitude
of shock in [η1,η2], we introduce a random variable W obeying Bernoulli
distribution with probability of success θ2.
In this paper, we let, if the interarrival time between two successive shocks
is less than δ1, this interarrival time is critical, and if the interarrival time
between two successive shocks is lying in [δ1,δ2], this interarrival time
is probably critical, and if the interarrival time between two successive
shocks is larger than δ2, this interarrival time is non-critical. Also if the
magnitude of a shock is larger than η2, this shock is critical, and if the
magnitude of a shock is lying in [η1,η2], this shock is probably critical,
and if the magnitude of a shock is less than η1, this shock is non-critical.
According to these definitions, we can write N1,N2,N3,N4, by the follow-
ing:
N1: The number of non-critical interarrival times between two successive
shocks and non-critical shocks that the system encounters before failure.
N2: The number of probably critical interarrival times between two suc-
cessive shocks and non-critical shocks that the system encounters before
failure.
N3: The number of non-critical interarrival times between two successive
shocks and probably critical shocks that the system encounters before fail-
ure.
N4: The number of probably critical interarrival times between two succes-
sive shocks and probably critical shocks that the system encounters before
failure.
Then, Tθ1,θ2 = ∑

N
i=1Ui is the lifetime of the system, where N = ∑

4
j=1 N j+1
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is the number of impact times between two shocks until failure of system.
Set

p1 = F̄(δ2)− H̄(δ2,η1),

p2 = (H(δ2,η1)−H(δ1,η1))(1−θ1),

p3 = (H̄(δ2,η1)− H̄(δ2,η2))(1−θ2),

p4 = ((H̄(δ1,η1)− H̄(δ2,η1))− (H̄(δ1,η2)− H̄(δ2,η2)))(1−θ1)(1−θ2),

p5 = 1− (p1 + p2 + p3 + p4),

The joint probability (mass) function of (N1,N2,N3,N4) and the probability
(mass) function of N are given in the following lemma.

Lemma 2.1. The joint probability (mass) function of (N1,N2,N3,N4) is

given by (
P(N1 = n1,N2 = n2,N3 = n3,N4 = n4) = ∑

4
i=1 ni

n1,n2,n3,n4pn1
1 pn2

2 pn3
3 pn4

4 p5,

)
and the probability (mass) function of N is given by

P(N = n) = (1− p5)
n−1p5.

3 The conditional distributions

In this section, the corresponding conditional distributions which is needed
to compute the survival function is derived. Consider the conditional dis-
tributions F(1)(u) := P(U ≤ u|U > δ2,Z < η1), F(2)(u) := P(U ≤ u|δ1 <

U < δ2,Z <η1), F(3)(u) :=P(U ≤ u|U > δ2,η1 < Z <η2), and F(4)(u) :=
P(U ≤ u|δ1 <U < δ2,η1 < Z < η2).

Theorem 3.1. We have

F(1)(u) =
H(u,η1)−H(min(u,δ2),η1)

F̄(δ2)− H̄(δ2,η1)

F(2)(u) =
H(min(δ2,u),η1)−H(δ1,η1

H(δ2,η1)−H(δ1,η1)
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F(3)(u) =
H̄(δ2,η1)− H̄(u,η1)− (H̄(δ2,η2)− H̄(u,η2))

H̄(δ2,η1)− H̄(δ2,η2)

F(4)(u) =
H̄(δ1,η1)− H̄(min(δ2,u),η1)− (H̄(δ1,η2)− H̄(min(δ2,u),η2))

H̄(δ1,η1)− H̄(δ2,η1)− (H̄(δ1,η2)− H̄(δ2,η2))

Proof. We prove this theorem only for F(1)(u). The proofs of other cases
are similar. According to definition of F(1)(u), we have

F(1)(u) = P(U ≤ u|U > δ2,Z < η1)

=
P(U ≤ u,U > δ2,Z < η1)

P(U > δ2,Z < η1)

=
P(δ2 <U ≤ u,Z < η1)

P(U > δ2,Z < η1)

=
H(u,η1)−H(min(u,δ2),η1)

F̄(δ2)− H̄(δ2,η1)
.

Example 3.2. Suppose that 10 minutes is enough time to do customer ser-
vice in a bank teller, but in 5 percent of cases, for various reasons such as
high customer workload, 10 to 15 minutes is needed, so if the time interval
between customer arrivals is less than 10 minutes, customer service will
have problems, but if this distance is more than 15 minutes, there will be
no problem. Also, if the time interval between consecutive inputs is be-
tween 10 and 15 minutes, in 5 percent of cases, service and performance
will be disrupted.
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Abstract: Pseudo-observations have been introduced as an approach to
perform regression modeling of a mean value parameter with right cen-
sored survival data. Once the pseudo-observations have been computed,
the models can be fit by using generalized estimating equation. The
pseudo-observations with the focus on survival function are introduced.
Analyzing regression models based on pseudo-observations is then dis-
cussed. A simulation study is conducted to illustrate the use of pseudo-
observations in regression analysis on the survival function.
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1 Introduction

In many applied settings such as medicine, biology, epidemiology, eco-
nomics, and demography, the outcome is time to some event of interest,
which is often incompletely observed due to censoring. To evaluate the ef-
fects of covariates on such an outcome, Cox proportional hazards model
([4]) is frequently used in most applications. This regression model is spec-
ified via the hazard function. Inference on the Cox model is based on a
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partial likelihood approach, in which the problem with censored data is
handled by putting most emphasis on the observed most emphasis on the
observed event times. In fact, presence of censoring put restriction on anal-
ysis of survival data. Without censored survival data, the survival time (out-
come) would be observed for all individuals and standard methods could
be used to analyze such data. Pseudo-observations can be considered as a
tool for analyzing survival data. This approach were first suggested by [3]
for performing generalized linear regression analysis of survival data. The
pseudo-observation technique allows direct regression modeling of the sur-
vival function ([8]), the restricted mean survival time ([2]), and the cumu-
lative incidence function for competing risks data ([7]). The approach uses
the pseudo-observations based on jackknife estimates that show the con-
tribution of an individual to the non-parametric estimator of the parameter
of interest. The pseudo-observations calculate for each individual in the
sample as the difference between the complete sample and the leave-one-
out estimators of relevant survival quantities. These pseudo-observations
are then used in a generalized estimating equation (GEE) to estimate the
effects of covariates on the outcome of interest.

The structure of the paper is organized as follows. In Section 2, we in-
troduce pseudo-observations specially for survival probabilities. Section 3
discusses analyzing regression models based on pseudo-observations with
the focus on survival function as a parameter of interest. Section 4 reports
some results from a simulation study conducted to illustrate the use of
pseudo-observations in regression analysis on the survival function. Sec-
tion 5 contains some discussion and concluding remarks.

2 The pseudo-observation method

Let T1, . . . ,Tn be independent and identically distributed lifetime random
variables. Under right-censoring, the observed dataset consists of n in-
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dependent identically distributed pairs (T̃i,δi), where T̃i is the observed
time and δi is the censoring indicator for the ith individual. Let θ be a
parameter of the form θ = E[ f (Ti)] for some function f (.) which may
be multivariate. Suppose an unbiased (or approximately unbiased) esti-
mator θ̂ for the parameter θ is available, that is E[θ̂ ] = θ . In addition,
Let X1, . . . ,Xn be independent and identically distributed covariates where
each Xi = [Xi1, . . . ,Xip]

>. The conditional expectation of f (Ti) given Xi is
defined by

θi = E[ f (Ti) | Xi].

Jackknife theory can then be used to define the pseudo-observation for
f (T ) for individual i, i = 1, . . . ,n, as

θ̂i = n . θ̂ − (n−1) . θ̂−i,

where θ̂−i is the ”leave-one-out” estimator for θ based on Tj, j 6= i. In
other words, θ̂−i is the estimator obtained from the sample size n− 1 by
removing the ith individual from the study.

The pseudo-observations θ̂i will always be used for all n (censored and
uncensored) individuals in the study. It should be noted that if the data were
complete (i.e. all Ti are observed), then θ could be estimated by ∑i f (Ti)/n

that in this case θ̂i is simply f (Ti). Therefore, this approach should be used
in a case that only a censored sample of the Ti is available.

To illustrate this approach, we consider the survival probability S(t) =

P(T > t) = E[I(T > t)] as the mean value parameter of interest. At a fixed
time point t0, the function of interest f (.) is given by

f (T ) = ft(T ) = I(T > t),

and the parameter θ is the survival function evaluated at t0, S(t0). Since the
Kaplan-Meier estimator Ŝ(t)([6]) is approximately unbiased estimator of
θ = S(t) ([1]), the ith pseudo-observation is then given by

Ŝi(t0) = n . Ŝ(t0)− (n−1) . Ŝ−i(t0),
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where Ŝ−i(t0) is the Kaplan-Meier estimator S(t0) based on n−1 observa-
tions j 6= i. At a grid of fixed time points t1 < .. . < tm, as a multivariate
version, the function f (.) is

f (T ) = [ ft1(T ), . . . , ftm(T )] = [I(T > t1), . . . , I(T > tm)],

with parameters

θ = [θ1, . . . ,θm] = [S(t1), . . . ,S(tm)].

When θ is a multivariate parameter of dimension m, then for each indi-

vidual t, m pseudo-observations can be defined as the following

θ̂ik = Ŝi(tk) = n . Ŝ(tk)− (n−1) . Ŝ−i(tk), k = 1, . . . ,m.

3 Regression models based on pseudo-observations

In survival analysis, it often is interesting to study the association between
the survival experience of an individual and some covariates using regres-
sion models which are often based on the hazard function. However, in
some situations more general regression models might be desirable where
in the presence of censored data, standard methods for modeling do not
exist. Pseudo-observations provide a common approach to different kinds
of models using generalized linear regression analysis in survival data.

A regression model to specify the relationship between θi and Xi can be
provided by a generalized linear model as

g(θi) = g(E[ f (Ti) | Xi]) = β
>Xi,

where g(.) is some link function. Here a column Xi0 = 1 is added to Xi

which contributes to an intercept β0. [3] suggested to replace the function
f (.) by a pseudo-observation, and then estimate the unknown parameters
by using the GEE based on the pseudo-observations. It should be noted
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that for each individual i, if the parameter θi is m-dimensional (m time
points), θi = [θi1, · · · ,θim]

>, then for each θik,k = 1, · · · ,m, a model can be
specified as

g(θik) = g(E[ ftk(Ti) | Xi]) = β
>Xik,

where the vector Xik includes indicators of the time points, I(tl = tk), l =

1, · · · ,m, to allow for different intercepts at each time. Therefore, here,
the parameter β is m+ p-dimensional which can be estimated from the
following generalized estimating equations

U(β ) =
n

∑
i=1

Ui(β ) =
n

∑
i=1

[
∂

∂β
g−1(β>Xik)

]>
V−1

i

[
θ̂i−g−1(β>Xik)

]
= 0, (1)

where Vi is a k× k working covariance matrix for θ̂i.

Let β̂ denote the solution to (1). The covariance matrix for β̂ can be esti-
mated by the standard sandwich estimator as

v̂ar(β̂ ) = I(β̂ )−1v̂ar(U(β̂ ))I(β̂ )−1,

where

I(β ) =
n

∑
i=1

[
∂

∂β
g−1(β>Xik)

]>
V−1

i

[
∂

∂β
g−1(β>Xik)

]
,

v̂ar(U(β )) =
n

∑
i=1

Ui(β )
>Ui(β ).

A non-parametric bootstrap technique can also be used to find an alter-
native jackknife estimator for the covariance of β̂ ([10]). Based on GEE
results of [9], [5] showed the estimated regression parameters β̂ are asymp-
totically normal and consistent estimators of β .

Note that the number and position of time points, m, is a choice which
must be made prior to the analysis. However, a single time point, m = 1, is
enough to obtain estimates of the regression parameters, more time points
may be improve efficiency for capturing the trend in the event distribution.
According to the results obtained by [2] and [7], increasing m does not
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have a significant impact on the precision of the estimated regression pa-
rameters. They also suggested that five to ten time points equally spaced
on the event time scale works quite well in most cases. Now suppose we
are interested to perform regression analysis on the survival function. In
this case, as discussed in the previous section, at a single time point t0,
we have f (T ) = I(T > t0) and thereby θ = S(t0). Then choosing the link
function as the cloglog-function g(x) = c log log(x) = log(− log(x)), the
generalized linear model becomes

log
(
− log(S(t0 | Xi))

)
= β0 +β

>Xi, i = 1, · · · ,n (2)

with β0 = log(H0(t0)) where H0(t) =
∫ t

0 h0(u)du is the cumulative base-
line hazard function. The model (2) corresponds to the Cox proportional
hazards model with survival function

S(t | Xi) = exp
{
−H0(t)exp

(
β
>Xi

)}
.

The model (2) can be extended to a joint proportional hazards model for a
grid of time points t1, · · · , tm as

log
(
− log(S(tk | Xi))

)
= β0k +β

>Xi, k = 1, · · · ,m (3)

where β0k = log(H0(tk)) indicates that the intercept may depend on the
time point tk.

4 Simulation study

A simulation study was conducted to illustrate the use of pseudo-
observations in regression analysis of model (3). Survival data were gen-
erated from the Cox model

h(t | x1,x2) = h0(t)exp(β1x1 +β2x2), (4)

with h0(t) = t, (β1,β2)
>= (3,−1)>, and x1 is a Bernoulli random variable

with success probability 0.5 which is independent of x2 that is a standard
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normal distributed variable. Independent censoring times were generated
from the uniform distribution on (0,c) where the constant c was selected
to result in, on average, about 10% or 25% of observations censored. For
each individual the pseudo-observations were calculated at equally spaced
time points within the range of the observed times. Each configuration was
based on 1000 replications with sample sizes n = 100 and 300, and for
each replication the model (3) was fitted. For comparison, the Cox model
(4) was also fitted to the data.

Table 1 summarizes the simulation results for the estimates of β1 and β2

based on m = 5 time points. The table shows the average of the 1000 esti-
mated regression parameters (Est.) and their corresponding standard errors
obtained from sandwich estimator v̂ar(β̂ ) (SEEsan) or approximate jack-
knife variance estimator (SEEa j). The average of the standard errors of the
regression parameters (SE) is also shown in table 1. The results indicate
that the GEE model based on the pseudo-observations seems to perform
quite well. Some bias is seen for the estimated regression parameters, but
it diminishes when the sample size is increased. The estimated standard
errors are close to the empirical standard errors. Comparing with the Cox
model, both the estimated standard errors and the empirical standard errors
seem to be higher for the model based on the pseudo-observations.

Discussion and conclusions

Jackknife pseudo-observations have been studied as a tool for analyzing
right-censored survival data. This approach is based on a set of pseudo-
observations computed for each individual in the study. The GEE approach
based on pseudo-observations can be used to analyze the effect of poten-
tial regression covariates for functions on the event times. The advantage
of this approach is that it allows one to model the event times by gener-
alized linear models without specifying a full parametric model. A sim-
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Table 1: Summary of simulation results.

Pseudo-observations Cox model

C% Est. SE SEEsan SEEa j Est. SE SEE

n = 100

β1 10 3.253 0.624 0.538 0.543 3.035 0.315 0.358

25 3.279 0.839 0.645 0.864 2.986 0.376 0.374

β2 10 -1.071 0.237 0.223 0.224 -1.012 0.139 0.144

25 -1.064 0.308 0.260 0.261 -0.986 0.159 0.154

n = 300

β1 10 3.066 0.285 0.286 0.286 3.008 0.182 0.199

25 3.049 0.285 0.325 0.324 3.023 0.205 0.211

β2 10 -1.015 0.122 0.121 0.121 -0.991 0.075 0.079

25 -1.022 0.135 0.139 0.139 -1.013 0.091 0.086

C%: the censoring percentage; Est.: the estimate of the parameter; SE: sample standard error of the estimates; SEE: the mean of the standard

error of the estimates.

ulation study was conducted to compare the traditional Cox proportional
hazards model with regression analysis based on pseudo observations. The
results of simulation study showed that the estimates for the Cox model
based on pseudo-observations are more dispersed than those based on the
standard partial likelihood methods. In fact, this approach provides a way
of inference for cases that standard methods may not be available.
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Abstract: In many practical studies of medical sciences it is common
to use the joint modeling of longitudinal measurements and time-to-event
data. Most of the time, particularly in clinical studies and health inquiry,
there are more than one event and they compete for failing an individual.
In this situation assessing the competing risk failure time is important. In
most cases, implementation of joint modeling involves complex calcula-
tions. Therefore, in this paper, we propose a two-stage method for joint
modeling of longitudinal measurements and competing risks (JMLC) data
based on the full likelihood approach via the conditional EM (CEM) al-
gorithm. In the first stage, a linear mixed effect model is used to estimate
parameters of the longitudinal sub-model. In the second stage, we con-
sider a cause-specific sub-model to construct competing risks data and to
describe an approximation for the joint log-likelihood that uses the esti-
mated parameters of the first stage. Finally, we perform this method on the
“standard and new anti-epileptic drugs” trial to check the effect of drug
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1 Introduction

assaying on the treatment effects of lamotrigine and carbamazepine
through treatment failure. In analyzing follow-up data, we are faced with
a lot of issues that deal with joint modeling of longitudinal and time-to-
event data. Hence, a lot of researches have been grown in this regard over
the recent years . The standard joint model includes two sub-models; a lon-
gitudinal sub-model and a time-to-event sub-model. These two sub-models
are related through an association structure that measures the relationship
between the favorite outcomes in the study. Commonly, a linear-mixed
effects sub-model for the longitudinal process is used for analyzing longi-
tudinal outcome and a Cox proportional hazard sub-model is considered
for the time-to-event process.

The relevant literature documents studies used the likelihood approach to
estimate the parameters in these models based on the shared random effects
model. In order to implement the full likelihood approach, both the classi-
cal and the Bayesian paradigms are used in the literature. Although the use
of the Bayesian paradigm partially simplifies computations, the existence
of multi-integrals in the joint log-likelihood function and the survival func-
tion still need complex calculations. Therefore, a two-stage method is sug-
gested which is performed in two stages; in the first stage, the longitudinal
data are fitted and in the second stage the fitted values of the longitudinal
process are used as covariates in the joint model to estimate the survival
parameters. Therefore, the two-stage methods can solve the problem of
complex calculation in the full likelihood approaches. [3] propose a modi-
fied two-stage approach to reduce the biases in this approach. Most of the
studies employing joint modeling framework focus on data with a single
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event time and only one failure cause. However, in medical research and
some situations of interest, there are more than one possible cause of event
or the censoring is informative. In such cases, the subjects of the study are
at risk with more than one mutually exclusive event such as death from dif-
ferent causes, so that competing risks data arise naturally. Studies on joint
modeling of longitudinal measurements and competing risks time-to-event
data have grown in the past decade.

In the following, we will refer to two papers in this regard. [2] proposed
a joint model for longitudinal measurements and competing risks survival
data and developed a Bayesian MCMC procedure for parameter estimation
and inference. [4] provided a comparison of joint models for longitudinal
and competing risks data and summarized four published models. In fact
They comprehensively reviewed the literature for implementation of joint
models involving more than one event time per subject.

In this paper, we propose a two-stage approach for joint modeling of lon-
gitudinal measurements and competing risks data. Because of two-stage
structure, it facilities computational problems of shared random effects in
joint models and makes it possible to use the standard packages of mixed-
effects model and survival models in R software.

2 Main results

2.1 Modeling framework

Consider a longitudinal study with n individuals. These recorded longi-
tudinal responses are measured at specific times si j, i = 1,2, ...,n, j =

1,2, ...,ni, therefore yi j = yi(si j) denotes longitudinal measurement for the
ith subject at time si j. Also, the observed failure time for the ith subject is
the minimum of true survival time and the censoring time and it is denoted
by Ti =min(T ∗i1,T

∗
i2, ...,T

∗
iK,Ci); where T ∗ik is the true survival time of subject
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i for each event type k = 1,2, ...,K and Ci is the randomly censoring time
for the ith subject. Also, δi is defined as the event indicator, which takes
value {0,1,2, ...,K}, with 0 corresponding to censoring and 1,2, ...,K to
the competing events.

In order to construct a two-stage approach for joint modeling of longitudi-
nal measurements and competing risks data, we consider two sub-models
as described separately in the following section; the association of these
models is also discussed.

2.1.1 Longitudinal sub-model

We assume a linear mixed effect sub-model to analyze longitudinal data.
The longitudinal sub-model can be written as:

Yi(s) = mi(s)+ εi(s), i = 1,2, ...,n, (1)

where, mi(s) is the mean response term for the ith subject and it is modeled
as:

mi(s) = X
′
i (s)β +Z

′
i(s)bi, (2)

and εi(s)
iid∼ N(0,σ2

ε ) is the error term for the ith subject at time s. Xi(s) is
a ni× p design matrix of the p observed explanatory variables and Zi(s)

is a ni× q design matrix of the q random effects for the ith subject. β is
a p-dimensional vector of fixed effects and bi is a q-dimensional vector of
random effects such that bi∼Nq(0,D), where D is a positive define matrix.

2.1.2 Competing risks sub-model

We consider the distribution of the competing risks failure time (Ti,δi)

takes the form of the following cause-specific hazard frailty model:

hik(t|Mi(t),wi) = limdt→0 P{t ≤ Ti < t +dt|Ti ≥ t,Mi(t),δi = k,wi}/dt

= h0k(t)exp{γk
′
wi +αkmi(t)}. (3)



Mehdizadeh, P., Baghfalaki, T. and Esmailian, M. 229

Here, h0k(t) is the baseline hazard function and wi is the vector of covari-
ates. Mi(t) = {mi(s),0≤ s < t} shows the history of the true unobserved
longitudinal process up to time t. Also, γk is a pk-dimensional vector of
cause-specific regression coefficients for wi and α = (α1, ...,αK)

′
is a K-

dimensional vector such that αk, k = 1, ...,K is a coefficient for the shared
time-variating covariate mi(t) that is defined in longitudinal sub-model and
these two sub-models are related through it.

2.1.3 Joint model structure

Note that, we can construct a joint model of longitudinal and time-to-event
data for each event type because of the choice of cause-specified hazard
for competing risks data. Therefore, to construct a joint model, we need a
full joint distribution of both process. There are different factorization for
this joint distribution that leads to different approaches for modeling.

In many studies concerning joint modeling of longitudinal measurements
and time-to-event data, it is common to use a shared parameter model. Usu-
ally, standard methods use a linear-mixed effects sub-model for the longi-
tudinal process and a Cox proportional hazard sub-model for the time-to-
event process.

Here, we consider a shared parameter model to join the longitudinal pro-
cess to competing risks process in which the longitudinal process and time-
to-event process for the kth failure type are linked by the parameter αk.

According to the two defined sub-models (1) and (2), the hazard rate in
competing risks model depends on the true unobserved longitudinal mea-
surements at time t. Also, we suppose that the longitudinal sub-model
and the survival process in the competing risks sub-model related to the
vector of random effects bi, therefore, under these assumptions, we can
write the likelihood function of the joint model. Let Y = (Y1

′
, ...,Yn

′
)
′
,

Y i = (Yi1, ...,Yini)
′
, b = (b1

′
, ...,bn

′
)
′
, t = (t1, ..., tn)

′
, δ = (δ1, ...,δn)

′
and
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θ be the vector of all parameters in two sub-models, then given the ran-
dom effects bi, the elements of yi and (ti,δi) are independent and we have:

P(ti,δi,yi|bi;θ) =
ni

∏
j=1

P(yi j|bi;θ)P(ti,δi|bi;θ). (4)

Therefore the log-likelihood function of joint models based on the ob-
served data can be written as follows:

l(θ |y,t,δ ) = ∑
i

logP(ti,δi,yi;θ)

= ∑
i

log
∫

bi

P(ti,δi,yi,bi;θ)dbi

= ∑
i

log
∫

bi

P(ti,δi|bi;θ t ,β )P(yi|bi;θ y)P(bi;θ b)dbi, δi = 1,2, ...,K,

where θ = {θ y,θ t ,θ b} wherein θ y = (β
′
,σ2

ε) is the unknown parameters
of longitudinal sub-model, θ t = (γ1

′
, ...,γK

′
,α
′
,θh0

′
) is the vector of un-

known parameters of competing risks sub-model and θ b = vech(D) is the
unknown parameters of the covariance matrix of random effects. To esti-
mate the parameters of this joint model we can write the score vector of
observed data as:

S(θ) = ∑
i

∂

∂θ
′ log

∫
P(ti,δi|bi;θ t ,β )P(yi|bi;θ y)P(bi;θ b)dbi (5)

= ∑
i

∫
∂

∂θ
′ log{P(ti,δi|bi;θ t ,β )P(yi|bi;θ y)P(bi;θ b)}P(bi|ti,δi,yi;θ)dbi,

δi = 1,2, ...,K. (6)

To calculate the maximum likelihood estimation of parameters in (5), the
EM algorithm can be used to obtain parameter estimation from the ex-
pected value of the complete data log-likelihood at the rth iteration of

Q(θ |θ (r)) = ∑
i

∫
log{P(ti,δi,yi,bi;θ)}P(bi|ti,δi,yi;θ

(r))dbi (7)

= ∑
i

∫
{logP(ti,δi|bi;θ)+ logP(yi|bi;θ)+ logP(bi;θ)}

P(bi|ti,δi,yi;θ
(r))dbi. (8)
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Therefore, it can be seen that obtaining estimates requires complex and
long calculations due to multiple integrations in (7). Also, multiple integra-
tions in this equation do not have a closed form. [3] proposed an approx-
imation for parameter estimation and the expected value of the complete
data log likelihood function. We use it in this investigation.

Let θ̂ = (θ̂ y
′
, θ̂ t

′
, θ̂ b

′
)
′
be the estimation of the full joint model parameters

in (3) and θ̃ = (θ̃ y
′
, θ̃ b

′
)
′

be the estimator obtained from the linear mixed
effect model in (1), then the expected function of the complete data log
likelihood at θ̂ has the form of

E[ log{P(t,δ ,y,b; θ̂)}] P−→ ∑
i

∫
( logP(ti,δi|bi; θ̂ t , θ̂ y)

+ logP(yi|bi; θ̂ b)+ logP(bi; θ̂ b))×P(bi; b̃i, H̃−1
i )dbi (9)

≈ ∑
i

logP(ti,δi, b̃i, θ̂ t , θ̃ y)+ logP(yi, b̃i; θ̃ y)+ logP(b̃i; θ̃ b),

where b̃i = argmax
b
{logP(yi,b; θ̃y)} and Hessian matrix,

H̃−1
i = (−∂ logP(yi|b, θ̃y))/(∂b∂b′)|b=b̃i

(See [3], for more details).

2.2 Two-stage approach for JMLC

Based on the two sub-models defined earlier, we implement the two-stage
method for joint modeling of longitudinal and competing risks data as fol-
lows:

In the first stage, we fit the linear-mixed effects model for longitudinal
process as described in (1) and the coefficients of the fixed effects (β ),
the covariance matrix D and the predictor of the random effects bi can be
estimated. Therefore, based on the observed longitudinal measurements,
we can write the fitted longitudinal sub-model of (1) as follows:

ỹi(si j) = m̃i(si j)+ εi(si j) (10)

= X
′
i (si j)β̃ +Z

′
i(si j)b̃i + εi(si j),

where, i = 1, ...,n and j = 1, ...,ni.
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In the second stage, we use the fitted values of parameters in the first step
to estimate competing risks parameters, that is

hik(t) = h0k(t)exp{γk
′
wi +αkm̃i(t)}, i = 1, ...,n, k = 1, ...,K, (11)

where, m̃i(t) is estimated in the first stage and is considered as a covariate
in the sub-model of the competing risks data. According to the approxi-
mation (9), we obtain the estimation of parameters in the competing risks
process for each failure type by maximizing the following approximation
term:

∑
i

log P(ti,δi, b̃i, θ̂ t , θ̃ y)+ logP(yi, b̃i; θ̃ y)+ logP(b̃i; θ̃ b), δi = 1,2, ...K.

Here, the density function of event process is given by

P(ti,δi, b̃i, θ̃ y;θ t) =
K

∏
k=1

h(ti|Mi(ti),wi, β̃ ;θ t)
I(δi=k)S(ti|Mi(ti),wi, θ̃ y;θ t)

=
K

∏
k=1

[h0(ti)exp{γk
′
wi +αkm̃i(ti)}]I(δi=k)

× exp

(
−

K

∑
k=1

∫ ti

0
h0(s)exp{γk

′
wi +αkm̃i(s)}ds

)
.

Also, the density function of longitudinal data given the random effects is
given as follows:

P(yi|b̃i; θ̃ y)P(b̃i; θ̃ b) =
ni

∏
j=1

P{yi(si j)|b̃i; θ̃ y}P(b̃i; θ̃ b) (12)

=
ni

∏
j=1

1

(2πσ̃2)(
ni
2 )

exp

(
−
||yi(si j)−X

′
i(si j)β̃ +Z

′
i(si j)b̃i||2

2σ̃2

)
× (2π)−(qb/2)det(D̃)−1/2 exp(−b̃

′

iD̃
−1b̃i/2).

2.2.1 Parameter estimation

Here, we present an algorithm to estimate the parameters of the joint mod-
eling of longitudinal measurements and competing risks data based on a
two-stage approach as follows:
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• Stage I : By using a standard software of mixed-effects model, like
the “lme” function, we estimate model (1) with all available observed
longitudinal data and obtain θ̃ y, θ̃ b and b̃i.

• Stage II: In this stage, we use the conditional EM algorithm and es-
timate the parameters of the competing risks process based on the
one-step Newton-Raphson method. We denote the vector of unknown
parameters of the time-to-event process for each failure type as θtk =

(θ h0k,γk,αk), k = 1, ...,K.

• Stage III: Perform the stage II for all failure types k, k = 1,2, ...,K and
complete the competing risks process.

3 Application

One dataset used here to demonstrate the issues in competing risks analysis
is the “standard and new anti-epileptic drugs” (SANAD) study which was
a non-blinded randomized controlled trial enrolling patients with epilepsy
to examine anti-epileptic drugs (AEDs). We could refer to [5] in order to
see the published design and analysis of this trial. Here, the withdrawal of
a randomized drug is considered as the time for treatment failure. Patients
may decide, due to inadequate seizure control (ISC), to switch to another
AED or to begin an additional AED. Also, patients may withdraw from
a treatment because of an unacceptable adverse effect (UAE). We use the
results from a competing risks analysis of the data for pairwise lamotrigine
(LTG) versus carbamazepine (CBZ).

This data set includes 605 patients whom; CBZ (n=292 ) compares to
LTG (n=313). 94 patients withdrew from the randomized drug because of
UAE whereas 120 withdrew because of ISC within a maximum follow-up
time of 6.6 years (median = 2.9 years). Withdrawals due to other reasons
were considered as non-informative and patients were censored in these
times. The maintenance dose recommended in the SANAD trial was inde-
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pendently considered reasonable and the approach to calibration sensible.
Therefore, these calibrated doses are taken to be the longitudinal measure-
ments within the competing risks joint model. On average, 4.6 longitudinal
measurements were recorded for patients. However, there are measure-
ments between 1 and 15 records.

We analyze these dataset using the proposed two-stage approach joint
modeling of the previous sections. As defined earlier, calibrated dose can
be considered as a response variable. We consider the following linear
mixed effect model for the longitudinal data sub-model:

yi(si j) = β0 +β1si j +β2LT Gi +β3LT Gisi j +bi0 +bi1si j + εi j, (13)

where, the LT Gi is a binary time-independent treatment effect that gives
value 1 if patient i is randomized to LTG and zero if the patient is random-
ized to CBZ. (bi0,bi1)

′
and εi j are distributed as N2(0,D) and N(0,σ2

ε ),
respectively. Also a cause-specific hazard model for the competing risk
data is defined as:

hk(ti) = λkexp{LT Giγk +αkmi(t)}, k = 1,2, (14)

where, the baseline hazard function is supposed to have an exponential dis-
tribution. Under this formulation, parameters γ1 and α1 denote the effects
of treatment (LTG) and dose calibrated, respectively, on the risk of ISCs
and γ2 and α2 denote the same effects for UAEs. As an illustration, we also
consider a separate model and a joint model ([1]) to compare with this pro-
posed two-stage approach. We use the lme() function for the longitudinal
measurement and the coxph() function in package survival for time-to-
event process to fit separate models. Also the joint Model() function in
JM package is used to fit the joint model.

A summary of parameter estimates and 95% confidence intervals (CIs) for
the longitudinal sub-model and the competing risks sub-model parameters
are given in Table 1. In this table, AIC (Akaike information criterion), BIC
(Bayesian information criterion) and computation time are considered to
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be used for comparing models. Also the estimation of parameters for error
term and the random effects covariance matrix are given in Table 2.

Table 1: Parameter estimates and 95% confidence intervals (CIs) for the longitudinal sub-model and the competing

risks sub-model.

Model Proposed Separate Joint model

parameter two-stage

β0(Intercept) 1.932 1.932 1.932

Longitudinal (95% CI) (1.826,2.039) (1.826,2.039) (1.858,2.005)

Process β1(Time) 0.151 0.151 0.045

(95% CI) (0.085,0.217) (0.085,0.217) (0.013,0.077)

β2(Treat(LT G)) -0.087 -0.087 0.041

(95% CI) (-0.236,0.061) (-0.236,0.061) (-0.079,0.162)

β3(Time : Treat) 0.214 0.214 0.404

(95% CI) (0.123,0.303) (0.123,0.303) (0.365,0.444)

λISC 0.240 - -

Event (95% CI) (0.020,0.028) - -

Process λUAE 0.218 - -

(95% CI) (0.174,0.262) - -

γISC 0.011 0.015 -0.134

(95% CI) (-0.222,0.244) (-0.344,0.374) (-0.497,0.230)

γUAE -0.460 -0.608 -0.614

(95% CI) (-0.787,-0.133) (-1.102,-0.192) (-1.534,0.306)

αISC 0.546 - 0.598

(95% CI) (0.487,0.605) - (0.443,0.751)

αUAE -0.503 - -0.942

(95% CI) (-0.615,-0.390) - (-1.455,-0.428)

Comparition AIC 7225.824 8260.968 7210.406

Criteria BIC 7234.771 8315.179 7342.563

Computation time 1.33 min < 1 s 4.8 min

As the results of Table 1 indicate, the estimated treatment effect on cali-
brated dose, β2, is non-significant for all models. The estimated of fixed
effect for time, β1, is significant for all models. That is to say, as time
passes, the average calibrated dose increases. Also the estimated effect of
treatment and time interaction, β3, is significant for all models. Looking
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Table 2: Parameter estimates of error term and the distinct components of the covariance matrix D (D11, D12 and

D22).

parameter Proposed Separate Joint model

two-stage

σ 0.446 0.446 0.472

D11 0.711 0.711 0.748

D22 0.150 0.150 0.066

D12 0.062 0.062 0.157

at the considered hazard model (14), we conclude that the overall treat-
ment effect on the event hazard is divided into the direct effect γk and the
indirect effect αk(β2 + β3ti j). Hence, the direct treatment effect must be
considered by adjusting for treatment-specific intercept and slope of dose
titration in the hazard model. The direct treatment effect on ISC, γISC, is
non-significant for all models in table 1. However, the direct treatment ef-
fect on UAE is significant for proposed two-stage joint modeling approach.
Hence, if LTG is tested at the same CBZ rate, the useful effect of LTG on
a UAE would still be evident and the difference in seizure control between
the two drugs is unclear.

The estimation of association parameter, αISC and αUAE is both significant
for two considered models in table 1, which suggests that calibrated dose
of drug is associated with time to treatment failure for both failure types.

The estimation of baseline hazard parameters, λISC and λUAE , is both sig-
nificant in the two-stage approach. Based on the given values of AIC, BIC
and computation time we can see that the proposed model performs well
and it is clear that BIC of proposed model is less than those of other mod-
els. AIC of proposed model is less than that of separate model although it
is a little more than the joint model. However, given that the computation
time is less than the computation time of the joint model, it can be said that
the proposed model has performed well compared to the other models.
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Abstract: The life extension for the engineering system consisting of in-
dependent components with an increasing failure rate functions is consid-
ered. The maintenance action is applied in a fixed component called the tar-
get component. This aim is also provided for the whole system. To this end,
minimal repair and cold standby actions are regarded. We also consider
two alternative policies for the target component. A component following
a new random variable, and another following the same distributions of
the target component. These policies obviously increase the reliability and
life of the target component and consequently, the life and reliability of the
engineering systems are also increased. In this regard, the life of the sys-
tem is also extended. The optimality issues regarding the aforementioned
statements are also described. Finally, some numerical results considering
these life extensions are presented.

Keywords: Cold standby, Engineering system, Minimal repair, Preventive
maintenance.

1 Introduction

The lifetime of engineering systems plays an important role for manufac-
turers and customers. Accordingly, the manufacture decides about guaran-
tee, warranty, and price and the customers decide about payment values.

1Mirjalili, S.M.: mirjalili8@yahoo.com
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Increasing the lifetime of any system results in benefits for both manufac-
tures and customers. To this end, several strategies have been investigated
by many scholars. In this study, we provide some methods of extending the
lifetime of engineering systems called component-based and system-based
ways.

Let T = ψ(X1,X2, . . . ,Xn) denote the lifetime of engineering system
consisting of independent components whose lifetimes are denoted by
X1,X2, . . . ,Xn. Thus there exist a multinomial expression representing the
reliability of such a system [10]. For more details about definitions, struc-
ture, relation, and . . . of engineering system, we refer the reader to [6, chap-
ter 4], [3] and [14] . The applications of engineering systems are very vast.
In fact, many engineering systems, all of the k-out-of-n, series, and paral-
lel systems with independent and identically distributed lifetimes of their
components are excellent examples of engineering systems. Some practi-
cal applications of engineering systems are as follows:

I : Communications system [11].

II : Data processing systems [13].

III : Tires of a car.

IV : Series system.

V : Parallel system.

VI : k-out-of-n system.

VII : Series-Parallel system.

VIII : Parallel-Series system.

It is obvious that all customers are interested in reliable systems. Increasing
the reliability of engineering systems is a favorite topic of many schol-
ars. These methods were introduced by [3], and developed recently by
[6, 11, 8, 2, 9, 5]. Among them, redundancy or maintenance actions can
be enumerated. There exist many papers dealing with maintenance or re-
dundancy theories for a special case of engineering systems like coherent,
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k-out-of-n, parallel, and series systems but in the case of just coherent sys-
tems, the study numbers are few.

The active redundancies for engineering systems and their dependent com-
ponents are studied in [14],[15]. Navarro et al. [10], utilizing the copula
functions, investigate three different policies of the minimal repair of failed
components for a coherent system with dependent components. Optimal
age replacement of a coherent system consisting of independent, identical,
and increasing failure rate components are provided in [4]. The life of a
class of coherent system consisting of independent and increasing failure
rate is optimally extended in [7]. In this study, we consider engineering
systems with independent and heterogeneous components. The results can
obviously be used in the case of homogeneous components. The compo-
nent’s lifetime considered following distributions with increasing failure
rate properties. In this class, the maintenance activities are applied for a
fixed component. These activities involve the minimal repair (replaced the
component when it fails with the same component at the same age), the
perfect repair (replaced the component during its work with another com-
ponent), and the cold standby (replaced the component when it fails with
another component). The aim is to increase the reliability of the system
and consequently increasing the mean to failure (MTTF) of the coherent
systems.

The rest of the paper is organized as follows. In section 2, we present the
formulas of minimal repair and cold standby activities. Furthermore, the
MTTF of an engineering system is provided as our objective functions.
Sections 3, and 4, deal respectively with life extension of engineering sys-
tems taking minimal repair, perfect repair, and cold standby maintenance.
Finally, the conclusion of our study is presented in section 5.
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2 Model description

Assume that X and Y be two non-negative independent variables respec-
tively following absolutely continuous cumulative distribution functions
(CDF) F and G. Thus the CDF of X +Y (convolution) is given by ([10, 5]):

F ∗G(t) = 1− F̄(t)−
∫ t

0
Ḡ(t− x) f (x)dx, (1)

where f indicates the probability distribution function (pdf) of the random
variable X . The relation 1 can be used in the cold standby procedure of
a component with CDF F by component with CDF G. Under a perfect
repair in cold standby process, it is obvious that F = G, and consequently
we have

F ∗∗G(t) = 1− F̄(t)−
∫ t

0
F̄(t− x) f (x)dx. (2)

Regarding minimal repair policy, the failed component X = x with CDF F

is replaced by a worked component with the age of x following the CDF
G. Hence the conditional revolution of X +Y is as follows ([10, 5]):

F#G(t) = 1− F̄(t)−
∫ t

0

Ḡ(t)
Ḡ(x)

f (x)dx, (3)

and for the case of F = G it is easy to see that:

F##G(t) = 1− F̄(t)−
∫ t

0

F̄(t)
F̄(x)

f (x)dx

= 1− F̄(t)+ F̄(t) log F̄(t). (4)

Here, assume that T represents the lifetime of a coherent system con-
sisting of independent component lifetimes X1,X2, . . . ,Xn following CDFs
F1,F2, . . . ,Fn respectively. Thus FT (t) is a multinomial expression of Fis
[10, 3]. The MTTF of such a system is given by

µt =
∫

∞

0
[1−FT (t)]dt (5)

In this study, we are going to investigate the aforementioned policies on
the MTTF of a coherent system. In continue without loss of generality, the
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number of components is considered as n = 3. Furthermore, some main
situations are listed and their coefficients are derived.

system structure CDF(FT (t))

I max(X1,min(X2,X3)) F1(t)(1− (1−F1(t))(1−F2(t)))

II min(X1,max(X2,X3)) 1− (1−F1(t))(1−F2(t)F3(t))

III min(X1,X2,X3) 1− (1−F1(t))(1−F2(t))(1−F3(t))

IV max(X1,X2,X3) F1(t)F2(t)F3(t)

Table 1: A coherent system with 3components

The most used statistical distribution in reliability analysis is Weibull dis-
tribution. This distribution has so important properties that are extensively
discussed in the literature. Based on the Weibull distribution, there were
constructed so many flexible modified distribution that can be utilized in
reliability modeling. For a comprehensive discussion on Weibull distribu-
tion and it’s modified see [12], [1]. The Weibull distribution with shape
parameter α and scale parameter λ denoted by W (α,λ ) is given by

fX(x) =
αxα−1

λ α
exp(−( x

λ
)α).

If α > 1 the distribution has an increasing failure rate feature and can be
used for the modeling of components lifetime. In this study, we consider
the scale parameter 1 and the shape parameter 1.5,2,2.5 respectively for
components 1,2,3.

3 Minimal repair

Under a minimal repair policy, the failed component is replaced by another
one having the same age. The alternative unit could have the same reliabil-
ity with the failed component (4) or not (3). If T and µt denote the lifetime
and MTTF of a coherent system, thus FT (t) = q(F1(t),F2(t), . . . ,Fn(t))

where q is multinomial expression of CDFs of lifetime components
X1,X2, . . . ,Xn. Moreover, it is directly seen that µt =

∫
∞

0 [1−FT (t)]dt. Now,
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consider a minimal repair action on the i−th component. The extended life-
time and extended MTTF (EMTTF) of the new version of this system is
given by

FT #iG(t) = q(F1(t),F2(t), . . . ,Fi#G(t), . . . ,Fn(t)),

and
µt#iG =

∫
∞

0
[1−F#iGT (t)]dt.

and similarly

FT ##iFi(t) = q(F1(t),F2(t), . . . ,Fi#G(t), . . . ,Fn(t)),

and
µt##iFi =

∫
∞

0
[1−F#iGT (t)]dt.

Minimal repair Component 1 Component 2 Component 3

µt 1.050 1.050 1.050

Same 1.540 1.123 1.118

W (1.5,2) 2.314 1.155 1.165

W (2,2) 2.109 1.158 1.166

W (2.5,2) 2.019 1.160 1.169

W (3,2) 1.974 1.163 1.171

Table 2: The EMTTF of the system I under minimal repair policy

Minimal repair Component 1 Component 2 Component 3

µt 0.707 0.707 0.707

Same 0.968 0.781 0.775

W (1.5,2) 1.053 0.846 0.848

W (2,2) 1.063 0.846 0.848

W (2.5,2) 1.072 0.848 0.849

W (3,2) 1.080 0.850 0.851

Table 3: The EMTTF of the system II under minimal repair policy

The numerical results due to the minimal repair policies for systems I and
II are tabulated in Tables 2 and 3. The optimal EMTTF of corresponding
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systems is also represented. These values are obviously present the good
performances of the minimal policy.

4 Cold standby

Under a cold standby process, the failed component is replaced by a new
one. The alternative unit could have the same reliability with the failed
component (2) or not (1). If T and µt denote the lifetime and MTTF of a
coherent system, thus FT (t) = q(F1(t),F2(t), . . . ,Fn(t)) where q is multino-
mial expression of CDFs of lifetime components X1,X2, . . . ,Xn. Moreover,
it is directly seen that µt =

∫
∞

0 [1−FT (t)]dt. Now, consider a minimal re-
pair action on the i−th component. The extended lifetime and extended
MTTF (EMTTF) of the new version of this system is given by

FT ∗i G(t) = q(F1(t),F2(t), . . . ,Fi ∗G(t), . . . ,Fn(t)),

and
µt ∗i G =

∫
∞

0
[1−F ∗i GT (t)]dt.

and similarly

FT ∗∗iFi(t) = q(F1(t),F2(t), . . . ,Fi ∗∗G(t), . . . ,Fn(t)),

and
µt ∗∗iFi =

∫
∞

0
[1−F ∗∗iGT (t)]dt.

The cold standby policy performing for systems III and IV in the numer-
ical form are tabulated in Tables 4 and 5. The MTTF of these systems is
extended in optimal form. The corresponding values are also provided.

5 Conclusion

An engineering system consisting of independent and repairable compo-
nents are considered. The lifetime of their components is considered with
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Minimal repair Component 1 Component 2 Component 3

µt 0.500 0.500 0.500

Same 0.624 0.600 0.586

W (1.5,2) 0.638 0.606 0.589

W (2,2) 0.643 0.609 0.591

W (2.5,2) 0.645 0.611 0.593

W (3,2) 0.646 0.611 0.593

Table 4: The EMTTF of the system III under cold standby process

Minimal repair Component 1 Component 2 Component 3

µt 1.320 1.320 1.320

Same 1.914 1.882 1.874

W (1.5,2) 2.756 2.749 2.751

W (2,2) 2.706 2.699 2.700

W (2.5,2) 2.698 2.690 2.692

W (3,2) 2.703 2.695 2.696

Table 5: The EMTTF of the system IV under cold standby process

increasing failure rate features. Three replacement policies including cold
standby and minimal repair policies applying to these components are in-
vestigated. The aim of performing these actions is to extend the life of the
system. The main question is when the operator acts preventive mainte-
nance to achieve optimal EMTTF of the systems. The corresponding rela-
tions of these policies have been studied and the comparison between these
policies is tabulated through some simulation studies.
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Abstract: Maintenance optimization problems have received much atten-
tion recently. Applying optimization actions in different contexts leads to
encounter expected and unexpected challenges. Inspections and monitor-
ing make useful data for optimizing maintenance policies and collected
data play an especial role in such problems. But sometimes data are in-
complete. In this paper, masking will be discussed in terms of the incom-
pleteness of data.

Keywords: Incomplete data, Maintenance optimization, Masking.

1 Introduction

Today maintenance actions are an indispensable part of life because of
excessive use of machines and systems in our life. The increasing leap in
science made a huge change in human life and has made life dependent
on different machines and systems such that life without machines and
systems is approximately impossible. Since performing any maintenance
action any time encountered some restrictions such as time and cost,

1Misaii, H.: hmisaii@ut.ac.ir
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different types of maintenance have emerged.
Generally, maintenance actions are classified into two categories: correc-
tive maintenance (CM) where maintenance activities are carried out when
the system is failed and preventive maintenance (PM) where maintenance
activities are performed when the system is operating. Also, there are dif-
ferent types of preventive and corrective maintenance, for more details one
is referred to [1] and references therein.

Another class of maintenance actions is called opportunistic maintenance
(OM). Cavalcante and Lopes defined OM as a systematic method of collec-
tion, investigation, and preplanning activities for generating a set of main-
tenance tasks to act on in the occurrence of an opportunity [2].

In the reliability analysis of series systems, time to failure and the exact
cause of failure (complete data) are collected in order to do different statis-
tical analysis such as estimation of the reliability function and maintenance
modeling. But, sometimes collected data are incomplete. Here we assumed
that the exact cause of failure is unidentifiable (because of improper di-
agnostic equipment storage, or time and cost restrictions) and it is only
known that the exact cause of failure belongs to a minimum random sub-
set(MRS) of all possible causes. These data are called to be masked [3, 4].

In this paper, an opportunity based perfect preventive maintenance policy
is considered in presence of incomplete data like masking. A perfect pre-
ventive maintenance action restores an operating deteriorated (non-failed)
component to an as good as new (AGAN) state, for instance replacing it
by a new one. Here, the maintenance policy is designed such that the per-
fect preventive replacement is opportunistic since the system fails besides
the failed component, some endangered components are replaced by a new
one. Also, inspections are applied periodically.

The rest of the paper is organized as follows. In section 2, the model is
explained. In section 3, the maintenance model is proposed. The average
long-run maintenance cost is presented in section 4. A numerical example
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is conducted in order to illustrate the applicability of the proposed method
in section 5. Finally, the conclusion is given in section 6.

2 Model Description

Suppose that we have a series system with J components that operates in
a static environment. Moreover, we suppose that when the system fails we
observe failure time, t, but the exact cause of failure might be unknown,
and we only know that it belongs to MRS of {1,2, ...,J}. Let M be the
observed MRS corresponding to the failure time t for the system. The set
M essentially includes components that are possible to be cause for system
failure and if M = {1, ...,J} then the system cause of failure is called to be
completely masked. Thus the known information is given as follows:

(t,M). (1)

To obtain the reliability function of the system and propose its maintenance
modeling some assumptions have been made as follows:

1. Let Tl; l = 1,2, ...,J be the lifetimes of the lth component (independent
components) and assume that the system fails only due to one of the
J components, therefore the system failure time (T) is defined to be
T = min(T1, ...,TJ).

2. Tl belongs to a continuous distribution family with probability density
and reliability functions denoted by fl(t) and Rl(t), respectively.

3. The reliability function of T is given by

R(t) = R(t;θ) = Pθ (T > t) =
J

∏
l=1

[1−Fl(t)] (2)

where θ = (θ1, ...,θJ), θl is the set of parameters related to the lth com-
ponent and Fl is corresponding distribution function of lth component.

4. Suppose K be a random variable which indicates the cause of failure
for the system. Then the joint probability density function of (T,K) is
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given by

fT,K(t, l) = fl(t)∏
j 6=l

[1−Fj(t)] (3)

where, the joint distribution of T and K can be specified in terms of
the so called sub-distribution function F( j, t) = P(K = j,T ≤ t), or
equivalently by the sub-reliability function R( j, t) = P(K = j,T > t)

[5].

5. pt
l(Mi) = P(M = Mi|T = t,K = l) is called the masking probability,

where Mi is an observation of M. Some authors such as Mukhopadhyay
[6], Kuo and Yang [7] and Cai and et al. [8], assumed

P(M = Mi|T = t,K = l) = P(M = Mi|K = l) = pl(Mi),

that is, the masking probability is independent of failure time, but is de-
pendent to the causes of failure. We assume similar to a new approach
that was presented to model the dependency of the masking probabil-
ity on the failure time and its exact cause using the multinomial logistic
regression model [9].

6. Some constraints are considered for conditional masking probabilities.
Suppose M be the set of all nonempty subsets of {1, ...,J} that have
2J − 1 members. For l = 1, ...,J, define Ml = {M ∈ M : l ∈ M, l ∈
{1, ...,J}} thus

Pt
l(Mi) = P(M = Mi|K = l,T = t) = 0 ∀Mi ∈Mc

l = M−Ml

and

∑
Mi∈M

Pt
l(Mi) = ∑

Mi∈Ml

Pt
l(Mi) = 1, l = 1, ...,J (4)

denote Pl = {Pt
l(Mi) : Mi ∈Ml}, l = 1,2, ...,J then the set of all masking

probabilities is P= (P1, ...,PJ).
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3 Maintenance Modeling

In this section, a perfect preventive maintenance (PPM) policy is presented
based on an opportunistic action and an optimal maintenance policy is de-
rived using long-run cost rate criteria for a series system with J compo-
nents. Inspections are assumed to be periodically at times kτ; k = 1,2, ...,
with cost cins for the system and Mk; k = 1,2, ... are corresponding masked
sets. The time interval ((k−1)τ,kτ] is called the kth period. Maintenance
actions are applied based on some assumptions including:

• Inspection is performed at the end of each period

• Time needed for inspections and maintenance actions is negligible

• The system failure is not self-announced

• Components are maintained independently

At kth inspection time, kτ , a maintenance action is performed if the system
has been failed during ((k−1)τ,kτ] interval, that is,

T > (k−1)τ & T < kτ.

Since it is assumed that exact cause of failure is unknown and it belongs to
possibly masked set, Mk ⊆ {1,2, ...,J}, thus the probability of each cause
in Mk given possibly masked set and interval censored failure time is given
by

p jMk = P(K = j|Mk,u ∈ ((k−1)τ,kτ]) =

∫ kτ

(k−1)τ P(Mk| j,u) fT,K(u, j)du∫ kτ

(k−1)τ ∑l′∈Mk
P(Mk|l′,u) fT,K(u, l′)du

(5)

where u is the exact failure time. Note that p jMk = 0 for j /∈Mk.

Eventually, when the system is failed at ((k−1)τ,kτ] a maintenance action
is carried out for each component in Mk according to a predetermined value
of ρ; 0 < ρ < 1, as follows:
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• If Tl > (k− 1)τ & Tl < kτ then perfect corrective maintenance
(PCM) action is done for component l with cost clc and probability
Pcl(kτ) (that is, the failed component l is replaced by a new one).

• If Tl > kτ & plMk > ρ then opportunistic perfect preventive mainte-
nance (OPPM) action is done for component l with cost cl p < clc and
probability Ppl(kτ) (that is, the degraded component l is replaced by a
new one).

Otherwise, no maintenance action is done.

4 Long-run cost rate

The time from the component installation to its first replacement or the
time between two successive replacement of each component is referred
to as a renewal cycle. Let L and L j denote the average long-run mainte-
nance cost per unit of time for the system and component j, respectively.
Therefore, based on the renewal reward theorem the expected long-run
maintenance cost rate for component j is

L j(τ,ρ) = lim
t→∞

C j(t)
t

=
E(Cr j)

E(Tr j)
(6)

where E(Cr j) and E(Tr j) are total expected cost during a replacement cycle
and expected length of the replacement cycle for component j, respectively
such that

E(Cr j) =
∞

∑
k=1

[(
kcins

J
+ c jp)Pp j(kτ)+(

kcins

J
+ c jc)Pc j(kτ)] (7)

and

E(Tr j) =
∞

∑
k=1

kτ[Pp j(kτ)+Pc j(kτ)]. (8)
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Figure 1: The optimal value of ρ as decision parameter considering (α1,α2,α3) = (0.5,0.25,0.7) and (β1,β2,β3) =

(1.5,1.25,1.75)

Finally, the total expected long-run maintenance cost rate for the series
system until time t is given by (see [10])

L(τ,ρ) =
J

∑
j=1

L j(τ,ρ). (9)

5 Numerical Example

In this section, an example illustrates the proposed method numerically.
We assume that a series system has J = 3 components that follow Weibull
distribution with parameters (α1,β1) = (0.5,1.5), (α2,β2) = (0.25,1.25)
and, (α3,β3) = (0.7,1.75).
The system is monitored periodically at times kτ; k = 1,2, ... and we
assume τ = 0.88.

According to the average long-run cost rate criteria, optimal value of ρ was
derived and depicted at Figure 1 based on the equation 9.

6 Conclusion

In this paper, maintenance optimization is investigated in presence of in-
complete data like masking. An opportunistic perfect preventive mainte-
nance policy is considered to handle masked data. A series system with 3
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components is considered to study the proposed method numerically. The
lifetime of components follows the Weibull distribution. As discussed in
the previous section, the proposed method is justified numerically and the
optimal value of ρ as a threshold for applying opportunistic perfect pre-
ventive action is derived based on the average long-run cost rate criteria.
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Abstract: The purpose of this paper is to provide a nonparametric method
for the estimation of copula-based stress-strength models. These method
is based on improved probit transformation method for copula density es-
timation. This nonparametric method is a novel application based on an
existing bivariate kernel method combined with Monte Carlo estimation
without specification of the copula or the marginal distributions. Simula-
tion results suggests that the nonparametric estimation method has better
performance than the empirical esimation method.

Keywords: Copula, Probit transformation, Stress-strength.

1 Introduction

In reliability analysis, the stress-strength model describes the reliability of
an individual which has a random strength X and is subject to a random
stress Y . The individual fails if the strength cannot resist on the stress.

1Mohammadi, M.: mo.mohammadi@uoz.ac.ir
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Hence, R= P(Y < X) represents the reliability of the individual. the stress-
strength models have been widely discussed in the statistical and relia-
bility literature. There are many literatures have investigated the stress-
strength models under different distributions. It is usually assumed that the
stress and strength variables are independent, then based on this assump-
tion to analysis the characteristics of the stress-strength models. However,
in many cases, the stress and strength variables are dependent in some way.
Nevertheless, a bivariate distribution model needs the marginal distribution
are the same type. To overcome this limitation, a copula-based approach,
which admits the margins are any type and not necessarily belonging to
the same family, was considered by some researchers. The Farlie-Gumbel-
Morgenstern copula is used by [3] to analyze the dependence in stress-
strength models. Recently, parametric and nonparametric inference for the
reliability of copula-based stress-strength models is discussed by [2].

This paper provides a general framework for estimating the reliability in
copula-based stress-strength models with an emphasis on model-robust in-
ference. These method is based on improved probit transformation method
for copula density estimation. We have not focused on any specific family
of distributions (margins) or copulas.

The rest of the paper is arranged as follows. In Section 2, the preliminaries
for copulas are described. The estimation of the copula density function
using local likelihood probit transformation method is provided in Section
3. In Section 4, the nonparametric method for the estimation of copula-
based stress-strength is presented. The simulation results are provided in
Section 5 and concluding remarks are given in Section 6.

2 Copulas

Some definitions related to a copula functions will be briefly reviewed
based on [5]. Let (X ,Y ) be a continuous random variable with joint cu-
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mulative distribution function (cdf) F , then copula C corresponding to F

defined as:

F(x,y) =C(FX(x),FY (y)), (x,y) ∈ R2, (1)

where FX and FY are the marginal distributions of X and Y , respectively. A
bivariate copula function C is a cumulative distribution function of random
vector (U,V ), defined on the unit square [0,1]2, with uniform marginal
distributions as U = FX(X) and V = FY (Y ).

The authors shall write C(u,v;θ) for a family of copulas indexed by the
parameter θ . If C(u,v;θ) is an absolutely continuous copula distribution
on [0,1]2, then its density function is c(u,v;θ) = ∂ 2C(u,v;θ)

∂u∂v . As a result, the
relationship between the copula density function (c) and the joint density
function fX ,Y (·, ·) of (X ,Y ) according to equation (1) can be represented as

fX ,Y (x,y) = c(FX(x),FY (y);θ) fX(x) fY (y), (x,y) ∈ R2, (2)

where fX(·) and fY (·) are the marginal density functions of X and Y , re-
spectively.

Table 1 presents summary information of some well-known bivariate copu-
las such as the parameter space and Kendall’s tau (τ) of them. In this table,
Clayton, Gumbel, and Frank copulas belong to the class of Archimedean
copulas and Gaussian and T copulas belong to the class of Elliptical copu-
las. The copula-based Kendall’s tau association for continuous variables X

and Y with copula C is given by τ = 4
∫
[0,1]2 C(u,v)dC(u,v)−1.

Table 1: Some well-known bivariate copulas

Copula C(u,v;θ) Parameter Space Kendall’s τ

Clayton (u−θ + v−θ −1)−1/θ θ ∈ [0,+∞) θ

θ+2

Gumbel exp
{
−
[
(− lnu)θ +(− lnv)θ

]1/θ}
θ ∈ [1,+∞) θ−1

θ

Gaussian1 Φ2(Φ
−1(u),Φ−1(v);θ) θ ∈ [−1,+1] 2

π
arcsin(θ)
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3 Local likelihood probit transformation estimation

Transformation method to kernel copula density estimation was introduced
by [1]. The simple idea is to transform the data so that it is supported on
the full R2. On this transformed domain, standard kernel techniques can be
used to estimate the density. An adequate back-transformation then yields
an estimate of the copula density.

Let (Ui,Vi)i=1,...,n are independent and identically distributed observations
from the bivariate copula C and the purpose is to estimate the correspond-
ing copula density function. Denote Φ as the standard Gaussian distribu-
tion and φ as its first order derivative. Then (Si,Ti) = (Φ−1(Ui),Φ

−1(Vi))

is a random vector with Gaussian margins and copula C. According
to (2), the corresponding density function can be written as f (s, t) =

c(Φ(s),Φ(t))φ(s)φ(t). Thus, an estimation of the copula density function
can be given by

ĉ(PT )
n (u,v) =

f̂n(Φ
−1(u),Φ−1(v))

φ(Φ−1(u))φ(Φ−1(v))
, (u,v) ∈ (0,1)2. (3)

As the (Ui,Vi) are unavailable and one has to use the pseudo-transformed
sample (Ŝi, T̂i) = (Φ−1(Ûi),Φ

−1(V̂i)), instead. As a first natural idea, the
standard kernel density estimator for f̂n in (3) can be considered as follows:

f̂n(s, t) =
1

n|HST |
1
2

n

∑
i=1

K
(

H−
1
2

ST

(s− Ŝi

t− T̂i

))
,

where K : R2 → R is a kernel function, and HST = bnI is a bandwidth
matrix.

This kernel estimator has asymptotic problems at the edges of the distri-
bution support. To remedy this problem, local likelihood probit transfor-
mation (L L PT ) method was recently suggested by [4]. Instead of ap-
plying the standard kernel estimator, they locally fit a polynomial to the

1Φ−1 is the inverse of the standardized univariate Gaussian distribution and Φ2 is the standardized bivariate Gaussian distribution with correla-

tion parameter θ .
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log-density of the transformed sample. This method can fix the boundary
issues in a natural way and able to cope with unbounded copula densi-
ties. Recently, [6] with a comprehensive simulation study has shown that
L L PT method for copula density estimation yields very good.

Around (s, t) ∈ R2 and (s′, t ′) close to (s, t), the local log-quadratic likeli-
hood estimation of log f (s, t) from the pseudo-transformed sample is de-
fined as:

log f (s′, t ′) = a2,0(s, t)+a2,1(s, t)(s′− s)+a2,2(s, t)(t ′− t)

+a2,3(s, t)(s′− s)2 +a2,4(s, t)(t ′− t)2 +a2,5(s, t)(s′− s)(t ′− t)

≡ Pa2(s
′− s, t ′− t).

The vector a2(s, t)≡ (a2,0(s, t), · · · ,a2,5(s, t)) is then estimated by

â2(s, t) = arg max
a2

{ n

∑
i=1

K
(

H−
1
2

ST

(s− Ŝi

t− T̂i

))
Pa2(Ŝi− s, T̂i− t)

−n
∫

R2
K
(

H−
1
2

ST

(s− s′

t− t ′

))
exp(Pa2(s

′− s, t ′− t))ds′dt ′
}
.

Therefore, the estimation of f (s, t) is f̃ p(s, t) = exp{â2(s, t)} and thus
L L PT estimator of a copula density is

ĉ(L L PT )
n (u,v) =

f̃ p(Φ−1(u),Φ−1(v))
φ(Φ−1(u))φ(Φ−1(v))

, (u,v) ∈ [0,1]2. (4)

When the underlying density is on [0,1]2, the performance of the kernel
estimator depends on the choice of the kernel function and the bandwidth
(smoothing parameter). For bandwidth choice, a practical approach is to
consider the minimization of the AMISE on the level of the transformed
data. In this article, the bandwidth choice based on nearest-neighbor
method; see [4].
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4 Estimation of copula based stress-strength

It is natural to consider nonparametric methods especially when the data
analyst is unsure about the specification of margins and copula. In this sec-
tion, we propose a combination of Monte Carlo and bivariate kernel copula
density estimation to obtain a nonparametric estimate of the reliability.

Let {(Xi,Yi)}i=1,···,n be a random sample of size n from dependent variabels
X and Y. The empirical estimator of R based on these observations is

R̂ =
1
n

n

∑
i=1

I[Yi<Xi]. (5)

The reliability for dependent X and Y can be rewritten based on copula
density as

R = P(Y < X) =
∫ +∞

−∞

∫ x

−∞

fX ,Y (x,y)dydx

=
∫ +∞

−∞

∫ x

−∞

c(FX(x),FY (y);θ) fX(x) fY (y)dydx.

By considering U = FX(X) and V = FY (V ),

R =
∫ 1

0

∫ F−1
X (u)

0
c(u,v;θ)dvdu. (6)

Thus, the Kernel estimation of R can be presented as

R̃ =
∫ 1

0

∫ u

0
ĉ(L L PT )

n (u,v)dvdu, (7)

where ĉ(L L PT )
n (·, ·) is the local likelihood probit transformation estima-

tion of copula density in equation (4).

We summarize the steps for the construction of our proposed nonparamet-
ric estimator R̃:

1. Given the data (Xi,Yi) obtain the pseudo observations (Ũi,Ṽi), where
Ũi = Ri/(n+ 1), Ṽi = Si/(n+ 1) for i = 1, · · · ,n, and Ri and Si are the
ranks of the observation Xi and Yi, respectively.
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2. Build the estimated copula density with local likelihood probit trans-
formation (L L PT ) method.

3. Estimate the reliability by Monte Carlo method according to (7).

5 Simulation study

In this section, a Monto Carlo simulation is presented to illustrate the es-
timation methods which are described. We demonstrate that the suggested
nonoparametric estimator based on local likelihood probit transformation
method is efficient than the empirical estimator of R.

Consider, the dependent data (U,V ) come from the Clayton, Gumbel and
Gaussian copulas with Kendall’s tau 0.2, 0.5, and 0.8 that are presented
in Table 1. These copulas cover different dependence structures. Gaussian
copula exhibit symmetric and no tail dependence in both lower and upper
tails. The Clayton copula exhibits strong left tail dependence and the Gum-
bel copula has strong right tail dependence. Moreover, 1000 Monte Carlo
samples of sizes n = 100 and 500 are generated from each type of copulas
with maginals normal and exponential (by rate 1 and 2) distributions. The
estimators obtained are compared via the Bias and root mean square error
(RMSE).

Results of the simulation study are presented in Tables 2, 3, and 4. These
tables present the Bias and RMSE relative to the two estimators of the
respective copulas for different values of sample sizes and Kendall’s tau
and different marginal distributions. The simulation procedure was per-
formed for the positive and negative values of Kendall’s tau and accord-
ing to the symmetry of the obtained results, the results have been reported
only for positive values of Kendall’s tau. As the results for the sample sizes
greater than 500 were in line with our expectation that the increase in sam-
ple size will improve the parameter estimation, the corresponding results
were omitted from the tables for brevity.
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Table 2: Estimated Bias and RMSE of the empirical and kernel estimations for clayton copula

Margianls (X & Y) n τ Empirical esimation Kernel estimation

Bias RMSE Bias RMSE

Normal & Normal 100 0.2 0.5170 0.5269 -0.0150 0.0126

0.5 0.5229 0.5334 -0.0198 0.0158

0.8 0.5346 0.5445 -0.0229 0.0186

500 0.2 0.5032 0.5052 -0.0112 0.0114

0.5 0.5117 0.5137 -0.0134 0.0103

0.8 0.5286 0.5303 -0.0182 0.0093

Normal & Exp(2) 100 0.2 0.3079 0.3241 0.1915 0.1134

0.5 0.3580 0.3710 0.2333 0.1735

0.8 0.3885 0.4528 0.2704 0.2504

500 0.2 0.2643 0.2872 0.1623 0.0923

0.5 0.2946 0.3270 0.2050 0.1350

0.8 0.3169 0.3997 0.2326 0.1823

Exp(1) & Exp(2) 100 0.2 0.7064 0.7118 -0.2932 0.2012

0.5 0.8113 0.8151 -0.3602 0.3090

0.8 0.8610 0.8640 -0.4123 0.3639

500 0.2 0.6287 0.6399 -0.2016 0.1824

0.5 0.7051 0.7258 -0.3076 0.2648

0.8 0.7602 0.7507 -0.3620 0.3285

The results show that estimated Bias and RMSE of estimations decrease as
sample size increases and estimations improve. The accuracy of the estima-
tions decrease with increasing Kendall’s tau. Based on Bias and RMSE, the
results show that the empirical esimation (R̂) has better performance than
the kernel estimation (R̃). Finally, it is necessary to note that although the
time required to compute the kernel estimation method is longer than the
empirical esimation method, but the kernel estimation method has accurate
and acceptable results especially for normal marginal distributions.

6 Conclusions

In this paper, we studied the nonparametric estimation of the stress-
strength reliability for dependent stress and strength variables based on
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Table 3: Estimated Bias and RMSE of the empirical and kernel estimations for gumbel copula

Margianls (X & Y) n τ Empirical esimation Kernel estimation

Bias RMSE Bias RMSE

Normal & Normal 100 0.2 0.4315 0.4117 0.0182 0.0120

0.5 0.4911 0.5029 0.0236 0.0193

0.8 0.5496 0.5684 0.0293 0.0226

500 0.2 0.4015 0.3638 0.0142 0.0101

0.5 0.4273 0.4393 0.0180 0.0163

0.8 0.4989 0.5023 0.0211 0.0192

Normal & Exp(2) 100 0.2 0.4063 0.3201 0.1947 0.1154

0.5 0.4655 0.3808 0.2380 0.1862

0.8 0.5370 0.4516 0.2929 0.2561

500 0.2 0.3016 0.2845 0.1641 0.0832

0.5 0.3666 0.3499 0.2176 0.1129

0.8 0.4487 0.4123 0.2532 0.1985

Exp(1) & Exp(2) 100 0.2 0.7130 0.5189 -0.2263 0.1812

0.5 0.7933 0.5970 -0.2955 0.2364

0.8 0.8280 0.6312 -0.3443 0.2978

500 0.2 0.6561 0.4072 -0.2069 0.1445

0.5 0.7046 0.4654 -0.2559 0.2012

0.8 0.7687 0.5294 -0.3026 0.2495

copulas. The simulation results suggests that the nonparametric estimation
of copula based stress-strength models via local likelihood probit trans-
formation method has better performance than the empirical esimation
method especially for normal marginal distributions.
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Abstract: The study is concerned with finding an optimal replacement
time for a parallel system that consists of some random number of depen-
dent and heterogeneous components. For dependence structure, we assume
the copula model between the lifetime of corresponding components. In
contrast to the previous works, the number of components is randomly sup-
posed. The impact of this assumption is investigated. In particular, we nu-
merically examine how the dependence between the components which are
randomly distributed, affects the optimal replacement time for the system
which minimize its mean cost rate function. We consider some different
cases for the lifetime of components, including independent and identical,
independent and not identical, dependent and identical, and finally depen-
dent and not identical. In addition, the number of components is randomly
assumed following an arbitrary positive and discrete probability mass func-
tion. In numerical results, the Poisson distribution is considered modelling
the number of components. Comparative numerical results are presented
for particularly chosen dependence models.
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1 Introduction

The assumption of independence of components in a system is rarely valid
in practice. In most real life situations, the lifetimes of components are de-
pendent. The components in a system may share the same load or may
be subject to the same set of stresses. This will cause the lifetimes of
components to be related to each other, or to be dependent [6]. In addi-
tion, circumstances may arise that the number of components in a sys-
tem is not fixed. The random number of these components has effects on
the reliability characteristics of a system. Reliability evaluation of systems
consisting of dependent components has attracted a great deal of atten-
tion. Some recent works on systems with dependent components are in
[15, 2, 10, 13, 14]. Other works that deal with a system consisting of a ran-
dom number of components are investigated in [3, 12, 1, 5, 8, 9, 11]. Nak-
agawa [7] formulated two optimization problems to find the optimal value
of the number of elements and optimal replacement time in a binary k-out-
of-n system. A parallel system work when all of their components function.
The optimal number of elements and optimal replacement time have been
analytically obtained by [7] when the system consists of independent com-
ponents each having the same exponential lifetime distribution. Nakagawa
and Zhao [8] considered the same optimization problems for a parallel sys-
tem with a random number of units when the components are independent.
Eryilmaz [3] studied the optimal number of units and optimal replacement
time for a parallel system consisting of a random number of units when the
distribution of the number of units follows a power series class of distribu-
tions. Recently Eryilmaz and Ozkut [4] optimized these objective functions
for a parallel system consisting of dependent components.
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This paper is concerned with a parallel system that has a random number
of units. The lifetime of their units also following a copula since they are
dependent. The distribution of the number of units is assumed to follow
a Poisson distribution. The optimal replacement time for such a parallel
system which minimizes the mean cost rate is computed. A parallel sys-
tem with a random number of units is potentially useful in various real life
situations. Consider a production system that consists of parallel machines
(units). Assume that each day a certain number of items are produced by
this system depending on the number of available units which may vary
day by day. The variation in the number of units is caused by some fac-
tors such as malfunctioning of a machine and the insufficient number of
operators. Thus, in a long term, we have a parallel system with a random
number of units on hand. The statistical distribution of the number of units
N can be determined by using daily data of the number of available units.

The optimal replacement time for a parallel system consists of some ran-
dom number of dependent components discussed in Section 2. Section
3 provide corresponding numerical results for such a system and some
of their reliability characteristics. Finally, the conclusion of our study is
present in Section 4.

2 Main results

Consider a parallel system consisting of N components, such that the sys-
tem fails when all components failed. Let X1,X2, . . . ,XN denote the failure
times of the components when the parallel system consists of dependent
and non-identical components. The number of components N, itself is ran-
dom and distributed the same as Poisson distribution with non-negative
parameters λ . The lifetime of all components is assumed following an
absolutely continuous cumulative distribution function P(Xi ≤ x) = Fi(x).
Moreover assuming copula function C(.) as dependency model among the
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lifetime of components, we have:

P(X1 ≤ x1,X2 ≤ x2, . . . ,XN ≤ xN|N = n) =C(F1(x1),F2(x2), . . . ,Fn(xn)),

(1)
where C(.) satisfies in continuing relations.

I: C(u1,u2, . . . ,ud) = 0 if at least one u j = 0.

II: C(1,1, . . . ,1,u j,1, . . . ,1,1) = u j if at most one u j 6= 1.

III: ∫
B

dC(u) = ∑
z∈×d

i=1{xi,yi}
(−1)N(z)C(z)≥ 0.

Then XN:N which is the largest among X1,X2, . . . ,XN represents the life-
time of the parallel system. Therefore, the lifetime of the parallel system
corresponds to T = XN:N . Consequently using (1), the reliability function
of such a parallel system is given by:

ST (t) = P(T > t)

= P(XN:N > t)

= 1−P(XN:N ≤ t)

= 1−P(X1 ≤ t,X2 ≤ t, . . . ,XN ≤ t)

= 1−
∞

∑
n=1

[P(X1 ≤ t,X2 ≤ t, . . . ,XN ≤ t|N = n)×P(N = n)]

= 1−
∞

∑
n=1

[P(X1 ≤ t,X2 ≤ t, . . . ,XN ≤ t)×P(N = n)]

= 1−
∞

∑
n=1

[C(F1(t),F2(t), . . . ,Fn(t))×
e−λ λ n

n!(1− e−λ )
].

(2)

Assuming FT (t) = 1− ST (t) the mean time to failure and mean cost rate
function of the parallel system are given by:

µ = E(XN:N)

= E(E(XN:N|N))
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= E(
∫

∞

0
(1−C(F1(t),F2(t), . . . ,Fn(t)))dt)

=
∞

∑
k=1

(
∫

∞

0
(1−C(F1(t),F2(t), . . . ,Fn(t)))dt)

e−λ λ n

n!(1− e−λ )
, (3)

and

M(A) =
c1E(N)+ c2FT (A)

E(min(T,A))

= c1

E(N)+
c2

c1
FT (A)

E(min(T,A))

= c1

λ +
c2

c1
FT (A)∫ A

0 ST (t)dt
.

(4)

In fact, the system is replaced at time A or at failure, whichever occurs first.
A cost nc1 is suffered for a non-failed system that is replaced at time A and
a cost nc1 + c2 is suffered for a failed system. Obviously minimizing (4)
heavily depends on the selection of the copula function C(.) and parmeter
λ . In addition if we assume that

c2

c1
= cc, minimizing (4) is equivalent to

minimize

M(A) ∝
λ + ccFT (A)∫ A

0 ST (t)dt
. (5)

Since c1 > 0, and in continue we provide the optimal value of (5) instead
of (4).

3 Simulation study

In this section we provide the valus of (3) and also minimize (5) with the
following assumptions.

I: cc = 5,25.

II: λ = 1,2,3.
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III: For modeling dependency among the lifetime of components, the posi-
tive quadratic dependent is suitable [4]. Consequently, the Gumbel cop-
ula has been chosen, since its positive quadratic dependency properties
and including independence copula. The Gumbel copula has the form

C(u1,u2, . . . ,un) = exp[−(
n

∑
k=1

(− log(uk))
θ )

1
θ ],θ ≥ 1. (6)

The corresponding parameters of this copula are respectively consid-
ered 1,5,20. The Gumbel copula with parameter 1 is an independent
copula and two other parameters considered respectively as a weak and
strong positive quadratic dependent.

IV: For the lifetime of components, we consider three cases including the
Weibull and exponential distributions for heterogeneous form and ho-
mogeneous standard exponential distribution such that:

I : Fi(t) = 1− e−it i
,

II : Fi(t) = 1− e−it ,

III : Fi(t) = 1− e−t .

For these given values, the mean time to failure, optimal replacement time,
and its mean cost rate function are provided in Tables (1),(2), and (3).

Regarding these tables, the following propositions can be mentioned.

Proposition 3.1. The R code of calculating mean time to failure:

rm(list=ls())

main=function(lam,theta){

require(copula);require(rmutil)

p=function(n)

{(exp(-lam)*(lam^n))/(factorial(n)*(1-exp(-lam)))}

p=Vectorize(p)

g=function(n){

if(n==1){
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return(1)

}else{

co=mvdc(gumbelCopula(theta,dim=n),

rep("exp",n),rep(list((list(rate=1))),n)

surv=function(t)1-pMvdc(rep(t,n),co)

return(int(surv,0,Inf))}}

g=Vectorize(g)

mu=function(N)sum(g(1:N)*p(1:N))

return(mu(30))

}

Proposition 3.2. The R code for optimization problems is also presented

by:

rm(list=ls())

require(DEoptim)

cc=5;lam=1;theta=5

G=function(tt){

require(copula);require(rmutil)

p=function(n)

{(exp(-lam)*(lam^n))/(factorial(n)*(1-exp(-lam)))}

p=Vectorize(p)

g=function(n,t){

if(n==1){

return(p(1)*(1-exp(-t)))

}

else{

co=mvdc(gumbelCopula(theta,dim=n),

rep("exp",n),rep(list((list(rate=1))),n))

surv=function(t)pMvdc(rep(t,n),co)

return(p(n)*surv(t))}}

g=Vectorize(g)
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return(1-sum(g(1:25,tt)))}

object=function(aa)(lam+cc*(1-G(aa)))/(int(G,0,aa))

DEoptim(object,0,15)

4 Conclusion

A parallel system consisting of heterogeneous and dependent components
has been considered. The dependency among their units is modeled uti-
lizing a copula function. The lifetime of these components is assumed to
following an absolutely continuous cumulative density function and the
number of components is also randomly assumed following the Poisson
probability mass function. For such a system, some reliability characteris-
tics including the mean time to failure, reliability function, and mean cost
rate function are calculated. The mean cost rate function is also optimized,
giving the optimal replacement time of this system. Under different cases,
such as different copula dependency, different Poisson parameters, and
different lifetime assumptions, the derived characteristics are compared.
Finally to the best of our knowledge about any different situations and as-
sumptions, extensive simulation studies are presented through many tables
and figures.
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λ = 1

cc = 5 cc = 25

Case µ Aopt M(Aopt) Aopt M(Aopt)

I 1.260 2.264 4.744 0.582 18.666

II 1.467 2.841 5.214 0.689 19.963

III 1.325 2.589 4.936 0.623 19.105

λ = 2

I 1.525 2.396 4.558 0.679 14.430

II 1.639 2.895 5.235 0.785 14.962

III 1.575 2.652 4.915 0.718 14.621

λ = 3

I 1.777 2.608 4.467 0.795 11.786

II 1.965 3.125 5.168 0.956 13.247

III 1.852 2.941 4.925 0.815 12.546

Table 1: The mean time to failure, optimal replacement time and its mean cost rate under given values, and Gumbel

dependency with parameter 1, (independent copula).

λ = 1

cc = 5 cc = 25

Case µ Aopt M(Aopt) Aopt M(Aopt)

I 1.046 2.036 4.128 0.496 18.003

II 1.132 2.136 4.221 0.519 18.268

III 1.147 2.365 4.269 0.524 18.496

λ = 2

I 1.093 1.963 4.189 0.258 14.089

II 1.295 2.458 4.863 0.378 14.587

III 1.174 2.284 4.521 0.397 14.389

λ = 3

I 1.135 2.149 3.998 0.269 11.248

II 1.623 2.759 4.675 0.568 12.874

III 1.358 2.628 4.519 0.328 12.009

Table 2: The mean time to failure, optimal replacement time and its mean cost rate under given values, and Gumbel

dependency with parameter 5.
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Abstract: Recently the scale and shape mixtures of matrix variate ex-
tended skew normal distributions (SSMESN) is introduced as a family of
the matrix variate distributions. Problem of finding a Bayes estimation for
the mean matrix of these distributions is considered and some applications
are described for the result. Finally, a simulation study is presented for an
application.
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1 Introduction

In multivariate analysis methods, the matrix variate distributions are very
important and have a key role. For example, the distribution of the maxi-
mum likelihood estimator of the covariance matrix of a multivariate normal
distribution is the Wishart distribution which plays a pivotal role in related
analysis. The matrix variate normal distribution is another important

1Yousefzadeh, F.: fyousefzadeh@birjand.ac.ir
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matrix variate distribution, see [1] and [3]. An p× n random matrix X is
said to follow a matrix variate normal distribution if its probability density
function (pdf) can be written as

φp×n(X ;M,Ψ⊗Σ) = (2π)−
np
2 |Ψ|−

p
2 |Σ|−

n
2 etr

{
− 1

2
Ψ
−1(X−M)′Σ−1(X−M)

}
,

where M is an p× n mean matrix, Σ is an p× p positive definite matrix
and Ψ is an n×n positive definite matrix. The normal matrix variate X is
denoted by X ∼Np×n(M,Ψ⊗Σ). The matrix variate extended skew normal
distribution, introduced by [5], is one of skew versions of the matrix variate
normal distribution. An p×n random matrix X follows a matrix variate
extended skew normal distribution with an p×n mean matrix M, an p× p

positive definite matrix Σ and n×n positive definite matrices Ω and Ψ, if
its pdf can be written as

fESN(X ;M,Ψ⊗Σ,Ω,λ ,δ ) =
φp×n(X ;M,Ψ⊗Σ)

Φn(δ ;Ω+λ
′
λΨ)

Φn(δ +(X−M)′Σ−
1
2 λ ;Ω),

where λ and δ are p and q dimensional vectors, respectively,
φp×n(·;M,Ψ⊗Σ) is the pdf of Np×n(M,Ψ⊗Σ) and Φn(·;Ω) is the cumu-
lative distribution function (cdf) of Nn(0,Ω). The extended skew normal
matrix variate X is denoted by X ∼ ESNp×n(M,Ψ⊗Σ,Ω,λ ,δ ).

[7] recently introduced the scale and shape mixtures of matrix variate ex-
tended skew normal distributions (SSMESN) as a new family of the distri-
butions which includes a wide range of the matrix variate distributions such
as normal, skew normal, t, skew t, skew-t-normal, skew-normal-Cauchy
and etc. An p× n random matrix Y is said to follow a SSMESN distribu-
tion with an p×n mean matrix M, an p× p positive definite matrix Σ and
n×n positive definite matrices Ω and Ψ, if

Y | θ = θ0,ω = ω0 ∼ ESNp×n(M,Ψ⊗ k(θ0)Σ,Ω,s(θ0,ω0)λ ,δ ), (1)

where θ and ω are two random variables with joint distribution Q(θ0,ω0)

and marginal distributions H(θ0) and G(ω0), respectively, k(θ0) is a
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weight function and s(θ0,ω0) is a real valued function. The SSMESN ma-
trix variate Y is denoted by Y ∼ SSMESNp×n(M,Ψ⊗Σ,Ω,λ ,δ ;(k,s),Q).
From (1), it is obvious that the pdf of Y is given by

f (Y ;M,Σ,Ψ,Ω,λ ,δ ) =
∫

SQ

fESN(Y ;M,Ψ⊗ k(θ)Σ,Ω,s(θ ,ω)λ ,δ )dQ(θ ,ω), (2)

where SQ is the support of Q.

There is an important situation for the SSMESN matrix variate Y with the
columns y1, . . . ,yn which is obtained by considering M = 1′n⊗µ , δ = δ1n

and Ω = Ψ = In, where µ ∈ Rp, δ ∈ R1 and 1n is a n-dimensional vector
of ones. In this situation,

yi | (θ ,ω)
iid∼ ESNp(µ,k(θ)Σ,s(θ ,ω)λ ,δ ), i = 1, . . . ,n,

with the conditional pdf

fESN(yi | θ ,ω; µ,k(θ)Σ,s(θ ,ω)λ ,δ ) =
1

Φ1(δ/
√

1+ s(θ ,ω)2λ
′
λ )

φp(yi; µ,k(θ)Σ)

× Φ1(δ + s(θ ,ω)k(θ)−
1
2 (yi−µ)′Σ−

1
2 λ ),yi ∈ Rp,

where φp and Φ1 are the pdf of the p-variate normal distribution and the
cdf of the univariate standard normal distribution, respectively.

The matrix variate SSMESN family is quite large and includes some dif-
ferent matrix variate distributions. For example,

- If k(θ0) = s(θ0,ω0) = 1, we have the matrix variate extended skew
normal distribution.

- If k(θ0) = s(θ0,ω0) = 1 and λ = 0, then the matrix variate normal
distribution is obtained.

- If λ = 0, then we obtain the scale mixture of matrix variate nor-
mal distributions which proposed by [2]. We denote this subfamily by
SMNp×n(M,Ψ⊗Σ;k,H).

- If δ = 0, then the SSMESN matrix variate Y follows the matrix variate
skew t distribution with ν degrees of freedom by considering k(θ0) =
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θ0 and s(θ0,ω0) = 1 with θ ∼ IGamma(ν

2 ,
ν

2 ), where IGamma(a,b) de-
notes the inverse gamma distribution with shape parameter a and scale
parameter b. We use the notation STp×n(M,Ψ⊗Σ,Ω,λ ,ν) to denote
this distribution.

- If δ = 0, Ψ = Ω = In, k(θ0) = 1 and s(θ0,ω0) = ω
−1

2
0 with ω ∼

IGamma(1
2,

1
2), then the SSMESN matrix variate Y follows the ma-

trix variate skew-normal-Cauchy distribution which is denoted here by
SNCp×n(M,Σ,λ ).

In next section, we obtain a posterior density for the mean matrix of the
matrix variate SSMESN distributions. Also, applications of the obtained
result in multivariate linear regression and stress-strength models will be
discussed in Section 3. Finally, Section 4 will present a simulation study
for comparing the Bayes estimators of a stress-strength reliability.

2 Main Result

To find a Bayes estimation for a parameter, here the mean matrix, it must
minimize the posterior risk. For this, the posterior distribution or posterior
density should be used. In this section, a posterior density for the mean
matrix of the matrix variate SSMESN distributions is derived by consider-
ing a matrix variate normal distribution as prior. The result is given in the
following proposition.

Proposition 2.1. Suppose that Y ∼ SSMESNp×n(M,Ψ ⊗
Σ,Ω,λ ,δ ;(k,s),Q) where Σ, Ψ, Ω, λ and δ are known. Let M is

independent of θ and ω , and has prior distribution as Np×n(0p×n,Ψ⊗∆),

where ∆p×p is a positive definite matrix. Then the posterior density of M is

∫
SQ

ρθ |Λθ |
n
2 φp×n(M;Λθ τΨ,Ψ⊗k(θ)Λθ )Φn(δ+s(θ ,ω)k(θ)−

1
2 (Y−M)′Σ

− 1
2 λ ;Ω)

Φn(δ ;Ω+s(θ ,ω)2λ
′
λΨ)

dQ(θ ,ω)

∫
SQ

ρθ |Λθ |
n
2 Φn(δ+s(θ ,ω)k(θ)−

1
2 (Y−Λθ τΨ)′Σ

− 1
2 λ ;Ω+s(θ ,ω)2λ

′
Σ
− 1

2 Λθ Σ
− 1

2 λΨ)

Φn(δ ;Ω+s(θ ,ω)2λ
′
λΨ)

dQ(θ ,ω)

, (3)
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where Λθ = (Σ−1 + k(θ)∆−1)−1, τ = Σ
−1Y Ψ

−1 and ρθ =

etr
{

Λθ τΨτ ′−τY ′
2k(θ)

}
.

Proof. From the pdfs of Y and M, we have

f (Y |M)π(M) ∝

∫
SQ

(2π)−
np
2 |Ψ|−

p
2 k(θ)−

np
2

Φn(δ ;Ω+ s(θ ,ω)2λ
′
λΨ)

× etr
{ −1

2k(θ)
Ψ
−1(M−Y )′Σ−1(M−Y )− 1

2
Ψ
−1M′∆−1M

}
×Φn(δ + s(θ ,ω)k(θ)−

1
2(Y −M)′Σ−

1
2 λ ;Ω)dQ(θ ,ω).

Since,

etr
{ −1

2k(θ)
Ψ
−1(M−Y )′Σ−1(M−Y )

}
= etr

{ −1
2k(θ)

τY ′
}

etr
{
− 1

2k(θ)
Ψ
−1M′Σ−1M+

1
k(θ)

τ
′M
}
,

and

etr
{ −1

2k(θ)
[Ψ−1M′Λ−1

θ
M−2τ

′M]
}

= etr
{ 1

2k(θ)
Λθ τΨτ

′
}

×etr
{ −1

2k(θ)
Ψ
−1(M−Λθ τ

′
Ψ)′Λ−1

θ
(M−Λθ τ

′
Ψ)
}
,

we can write

f (Y |M)π(M) ∝

∫
SQ

etr
{

Λθ τΨτ ′− τY ′

2k(θ)

}
|Λθ |

n
2
φp×n(M;Λθ τΨ,Ψ⊗ k(θ)Λθ )

Φn(δ ;Ω+ s(θ ,ω)2λ
′
λΨ)

×Φn(δ + s(θ ,ω)k(θ)−
1
2(Y −M)′Σ−

1
2 λ ;Ω)dQ(θ ,ω).

So, by substituting U = M−Λθ τΨ,

∫
Rp×n

f (Y |M)π(M)dM ∝

∫
SQ

etr
{

Λθ τΨτ ′−τY ′
2k(θ)

}
|Λθ |

n
2

Φn(δ ;Ω+ s(θ ,ω)2λ
′
λΨ)

E[Φn(δ + s(θ ,ω)k(θ)−
1
2

× (Y −Λθ τΨ)′Σ−
1
2 λ − s(θ ,ω)k(θ)−

1
2U ′Σ−

1
2 λ ;Ω)]dQ(θ ,ω),

where U ∼ Np×n(0p×n,Ψ⊗ k(θ)Λθ ).

We know by Lemma 2.1 of [4],

E[Φn(δ + s(θ ,ω)k(θ)−
1
2 (Y −Λθ τΨ)′Σ−

1
2 λ − s(θ ,ω)k(θ)−

1
2U ′Σ−

1
2 λ ;Ω)]

= Φn(δ + s(θ ,ω)k(θ)−
1
2 (Y −Λθ τΨ)′Σ−

1
2 λ ;Ω+ s(θ ,ω)2

λ
′
Σ
−1

2 Λθ Σ
−1

2 λΨ),
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and the proof is complete by

π(M|Y ) = f (Y |M)π(M)∫
Rp×n f (Y |M)π(M)dM

.

The following corollaries can be written by using Proposition 2.1.

Corollary 2.2. Let Λ = (Σ−1 +∆
−1)−1.

(i) If Y ∼ Np×n(M,Ψ⊗Σ), then M|Y ∼ Np×n(ΛΣ
−1Y ,Ψ⊗Λ).

(ii) If Y ∼ ESNp×n(M,Ψ⊗Σ,Ω,λ ,δ ), then the posterior distribution of M

is

ESNp×n(ΛΣ
−1Y ,Ψ⊗Λ,Ω,−Λ

1
2 Σ
−1

2 λ ,δ +(Y −ΛΣ
−1Y )′Σ−

1
2 λ ).

Corollary 2.3. If Y ∼ STp×n(M,Ψ⊗Σ,Ω,λ ,ν), then the posterior density

of M is as follows:

Eθ

[
ρθ |Λθ |

n
2 φp×n(M;Λθ τΨ,Ψ⊗θΛθ )Φn(θ

−1
2(Y −M)′Σ−

1
2 λ ;Ω)

]
Eθ

[
ρθ |Λθ |

n
2 Φn(θ

−1
2(Y −Λθ τΨ)′Σ−

1
2 λ ;Ω+λ

′
Σ
−1

2 Λθ Σ
−1

2 λΨ)
] ,

where τ =Σ
−1Y Ψ

−1, Λθ = (Σ−1+θ∆
−1)−1 and ρθ = etr

{
Λθ τΨτ ′−τY ′

2θ

}
.

Corollary 2.4. If Y ∼ SNCp×n(M,Σ,λ ), then

π(M|Y ) =
φp×n(M;Λτ, In⊗Λ)FC((Y −M)′Σ−

1
2 λ ; In)

Eω

[
Φn

(
(Y−Λτ)′Σ

−1
2 λ√

ω+λ
′
Σ
−1

2 ΛΣ
−1

2 λ

; In

)] ,

where τ =Σ
−1Y , Λ=(Σ−1+∆

−1)−1 and FC(·; In) is the cdf of the n-variate

standard Cauchy distribution.

3 Applications

The result obtained in Proposition 2.1 can be used in many models. In this
section, we explain the application of the result in the multivariate linear
regression and stress-strength models.
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3.1 Multivariate linear regression models

The following corollary derives a posterior density for the parameters in
the multivariate linear regression models.

Corollary 3.1. Suppose that x1, . . . ,xn are p-dimensional vectors such that

xi
iid∼ SMNp(Bzi,Σ;k,H), i = 1, . . . ,n, (4)

where zi is a q-dimensional known vector and B is a p× q unknown

matrix. If B has prior distribution as Np×q(0p×q,(ZZ′)−1 ⊗ Ξ), where

Z = (z1, . . . ,zn) is a q× n known matrix and Ξp×p is a positive definite

matrix. Then the posterior density of B, the regression parameters, is given

by [∫
SH

etr{ 1
2k(θ)

(Πθ Σ
−1− Ip)XZ′(ZZ′)−1ZX ′Σ−1}|Πθ |

q
2 dH(θ)

]−1

×
∫

SH

etr{ 1
2k(θ)

(Πθ Σ
−1− Ip)XZ′(ZZ′)−1ZX ′Σ−1}|Πθ |

q
2

×φp×q(B;Πθ Σ
−1XZ′(ZZ′)−1,(ZZ′)−1⊗ k(θ)Πθ )dH(θ),

where X = (x1, . . . ,xn)p×n and Πθ = (Σ−1 + k(θ)Ξ−1)−1.

Proof. From (4), it follows that

X ∼ SMNp×n(BZ, In⊗Σ;k,H).

Since X | θ ∼ Np×n(BZ, In⊗ k(θ)Σ), by properties of the matrix variate
normal distribution, we have

XZ′(ZZ′)−1 ∼ SMNp×q(B,(ZZ′)−1⊗Σ;k,H).

Now, since B ∼ Np×q(0p×q,(ZZ′)−1⊗Ξ). The proof is completed by using
Proposition 2.1 with Y p×q = XZ′(ZZ′)−1, Ψq×q = (ZZ′)−1, ∆ = Ξ and
λ = 0.
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3.2 Stress-strength models

Another application of the result of Proposition 2.1 is obtaining a Bayes
estimator for the reliability of the stress-strength model. We describe it as
follows;

In the stress-strength model, the reliability is R = P(a′x + b′y+ c > 0),
where x ∈Rp and y ∈Rq are two independent random vectors and a ∈Rp,
b ∈ Rq and c ∈ R are known. Here, suppose that

x | (θ ,ω)∼ ESNp(µ1,k(θ)Σ1,s(θ ,ω)λ 1,δ1), (5)

and

y | (θ ,ω)∼ ESNq(µ2,k(θ)Σ2,s(θ ,ω)λ 2,δ2), (6)

and denote the corresponding reliability by RSSMESN .

Let x1, . . . ,xn and y1, . . . ,ym are two independent random samples from the
distributions x and y, respectively. It is obvious that,

X = (x1, . . . ,xn)∼ SSMESNp×n(M1, In⊗Σ1, In,λ 1,δ 1;(k,s),Q),

and

Y = (y1, . . . ,ym)∼ SSMESNq×m(M2, Im⊗Σ2, Im,λ 2,δ 2;(k,s),Q),

where M1 = 1′n ⊗ µ1, δ 1 = δ11n, M2 = 1′m ⊗ µ2 and δ 2 = δ21m. Let
Σi, λ i and δ i, for i = 1,2, are known and consider prior distributions
Np×n(0p×n, In⊗∆1) and Nq×m(0q×m, Im⊗∆2) for M1 and M2, respectively.
By Proposition 2.1, posterior densities of M1 and M2 have the form (3).
Since µ1 =

1
nM11n and µ2 =

1
mM21m, RSSMESN is a function of M1 and M2,

i.e. RSSMESN(M1,M2), and its Bayes estimator under squared error loss
function is obtained by

R̂SSMESN =
∫
Rp×n

∫
Rq×m

RSSMESN(M1,M2)π(M1|X)π(M2|Y )dM2dM1. (7)

In the following, we present examples for obtaining the stress-strength reli-
ability of some multivariate distributions such as normal, skew t and skew-
normal-Cauchy.
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Example 3.2. By considering k(θ) = s(θ ,ω) = 1, λ 1 = 0, λ 2 = 0 and δ1 =

δ2 = 0, the Bayes estimator for the stress-strength reliability corresponding
to the multivariate normal distributions, RN , is obtained from (7), where

RSSMESN(M1,M2)≡ RN(M1,M2) = Φ1

( 1
na′M11n +

1
mb′M21m + c√

a′Σ1a+b′Σ2b

)
,

and by Corollary 2.2,

M1|X ∼Np×n(Λ1Σ
−1
1 X , In⊗Λ1), and M2|Y ∼Nq×m(Λ2Σ

−1
2 Y , Im⊗Λ2)

with Λi = (Σ−1
i +∆

−1
i )−1 for i = 1,2.

Example 3.3. If it is considered in (5) and (6), respectively,

δ1 = 0,k(θ0) = θ0,s(θ0,ω0) = 1,θ1 ∼ IGamma(ν1
2 ,

ν1
2 ),

and
δ2 = 0,k(θ0) = θ0,s(θ0,ω0) = 1,θ2 ∼ IGamma(ν2

2 ,
ν2
2 ),

then x ∼ STp(µ1,Σ1,λ 1;ν1) and y ∼ STq(µ2,Σ2,λ 2;ν2). In this case, the
reliability RSSMESN becomes the stress-strength reliability of the multivari-
ate skew t distributions, RST , which has been calculated by [6]. Hence, by
using (7), the Bayes estimator of RST is as follows:

R̂Bayes
ST =

∫
Rp×n

∫
Rq×m

RST (M1,M2)π(M1|X)π(M2|Y )dM2dM1,

where from Corollary 2.3,

π(M1|X) =
Eθ1

[
ρ1

θ1
|Λ1

θ1
|
n
2 φp×n(M1;Λ

1
θ1

τ1,In⊗θ1Λ
1
θ1
)Φn(θ

−1
2

1 (X−M1)
′Σ
−1

2
1 λ 1;In)

]

Eθ1

[
ρ1

θ1
|Λ1

θ1
|
n
2 Φn(θ

−1
2 (X−Λ

1
θ1

τ1)′Σ
−1

2
1 λ 1;(1+λ

′
1Σ
−1

2
1 Λ

1
θ1

Σ
−1

2
1 λ 1)In)

] ,
and

π(M2|Y ) =
Eθ2

[
ρ2

θ2
|Λ2

θ2
|
m
2 φq×m(M2;Λ

2
θ2

τ2,Im⊗θ2Λ
2
θ2
)Φn2(θ

−1
2

2 (Y−M2)
′Σ
−1

2
2 λ 2;Im)

]

Eθ2

[
ρ2

θ2
|Λ2

θ2
|
m
2 Φm(θ

−1
2

2 (Y−Λ
2
θ2

τ2)′Σ
−1

2
2 λ 2;(1+λ

′
2Σ
−1

2
2 Λ

2
θ2

Σ
−1

2
2 λ 2)Im)

] ,

with Λ
i
θi
= (Σ−1

i +θi∆
−1
i )−1 for i = 1,2, τ1 = Σ

−1
1 X , τ2 = Σ

−1
2 Y ,

ρ1
θ1
= etr

{
Λ

1
θ1

τ1τ
′
1−τ1X ′

2θ1

}
and ρ2

θ2
= etr

{
Λ

2
θ2

τ2τ
′
2−τ2Y ′

2θ2

}
.
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Example 3.4. By considering δ1 = δ2 = 0, k(θ0) = θ0 and s(θ0,ω0) =ω
−1

2
0

in (5) and (6) when ω ∼ IGamma(1
2,

1
2), the distribution of the vectors x

and y are SNCp(µ1,Σ1,λ 1) and SNCq(µ2,Σ2,λ 2), respectively. Consider
the stress-strength reliability of these vectors and denote it by RSNC. From
(7), the Bayes estimator of RSNC is given by

R̂Bayes
SNC =

∫
Rp×n

∫
Rq×m

RSNC(M1,M2)π(M1|X)π(M2|Y )dM2dM1,

where by Corollary 2.4,

π(M1|X) =
φp×n(M1;Λ1τ1, In⊗Λ1)FC((X−M1)

′Σ
−1

2
1 λ 1; In)

Eω

[
Φn

(
(X−Λ1τ1)′Σ

−1
2

1 λ 1

(ω+λ
′
1Σ
−1

2
1 Λ1Σ

−1
2

1 λ 1)
1
2

; In

)] ,

π(M2|Y ) =
φq×m(M2;Λ2τ2, Im⊗Λ2)FC((Y −M2)

′Σ
−1

2
2 λ 2; Im)

Eω

[
Φm

(
(Y−Λ2τ2)′Σ

−1
2

2 λ 2

(ω+λ
′
2Σ
−1

2
2 Λ2Σ

−1
2

2 λ 2)
1
2

; Im

)] ,

withτ1 = Σ
−1
1 X , τ2 = Σ

−1
2 Y and Λi = (Σ−1

i +∆
−1
i ) for i = 1,2, and also by

[6],

RSNC(M1,M2) =RN(M1,M2)+
1
π

[∫
∞

0

cos((1
na′M11n +

1
mb′M21m + c)u)

u

× e
−u2

2 (a′Σ1a+b′Σ2b)(
∗
τΣ1,λ 1 (au)+

∗
τΣ2,λ 2 (bu))du

−
∫

∞

0

sin((1
na′M11n +

1
mb′M21m + c)u)

u

× e
−u2

2 (a′Σ1a+b′Σ2b) ∗
τΣ1,λ 1 (au)

∗
τΣ2,λ 2 (bu)du

]
,

where
∗
τΣ,λ (t) =

∫
∞

0 τ

(
λ
′
Σ

1
2 t√

1+x2λ
′
λ

x
)

φ1(x)dx with the pdf of the univariate

standard normal distribution, φ1, and τ(z) =
√

2
π

∫ z
0 exp{t2

2 }dt.
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4 Simulation study

In this section, we present a simulation study to compare the Bayes esti-
mators of the stress-strength reliability of the multivariate skew normal-
Cauchy distributions, RSNC, with different priors. Here, we focus on com-
paring the Bayes estimators of the stress-strength reliability corresponding
to

x∼ SNC3

µ1 =

 0
1
2

 ,Σ1 =

 4.5 1.5 −0.4
1.5 3.0 2.3
−0.4 2.3 4.5

 ,λ 1 =

 −1
1
−1


 ,

and

y∼ SNC3

µ2 =

 2
−1
−1

 ,Σ2 =

 2.0 −0.5 −0.8
−0.5 2.2 −0.3
−0.8 −0.3 1.8

 ,λ 2 =

 0.3
−0.3
−0.3


 ,

with a = b = (0.25,0.5,−0.25)′ and c = 1 which equals to 0.82164. We
have taken the following priors to estimate RSNC:

• Prior-1: ∆1 = I3 and ∆2 = I3;

• Prior-2: ∆1 =

 2.73 −0.66 −1.59
−0.66 2.73 1.35
−1.59 1.35 2.73

 , and ∆2 =

 1.66 1.66 1.42
1.66 3.55 1.66
1.42 1.66 2.81

;

• Prior-3: ∆1 =

 1.66 1.66 1.42
1.66 3.55 1.66
1.42 1.66 2.81

 , and ∆2 =

 2.73 −0.66 −1.59
−0.66 2.73 1.35
−1.59 1.35 2.73

 .
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Table 1 presents Bias and MSE of different Bayes estimators of RSNC for
varying samples sizes. It can be observed that for any pair (n,m), MSE
and absolute value of Bias of the Bayes estimator with Prior-3 are lower
than that of other Bayes estimators. Hence, Prior-3 introduces considerably
more prior information for RSNC. Also, as the sample sizes increase, MSE
of each priors decrease.

Table 1: The results of simulation for different Bayes estimates of RSNC.

(n,m)
Prior-1 Prior-2 Prior-3

Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE

(10,10) 0.745261 -0.076379 0.007716 0.758075 -0.063564 0.010236 0.844336 0.022696 0.001999

(10,15) 0.779812 -0.041828 0.004289 0.746165 -0.075475 0.010454 0.852224 0.030584 0.002575

(10,20) 0.768550 -0.053089 0.004330 0.756174 -0.065466 0.007348 0.839514 0.017873 0.001680

(15,10) 0.777213 -0.044426 0.004964 0.748355 -0.073285 0.008810 0.833099 0.011459 0.002159

(15,15) 0.772117 -0.049522 0.004271 0.764487 -0.057152 0.007266 0.855693 0.034053 0.003166

(15,20) 0.772982 -0.048657 0.003523 0.754297 -0.067342 0.007193 0.826814 0.005173 0.002467

(20,10) 0.782422 -0.039217 0.004371 0.777499 -0.044141 0.007374 0.846645 0.025004 0.001743

(20,15) 0.788783 -0.032857 0.002021 0.755248 -0.066391 0.007225 0.834473 0.013092 0.001603

(20,20) 0.779591 -0.042048 0.002895 0.759800 -0.061840 0.006779 0.823567 0.001927 0.001908

Conclusion

In this paper, we have presented a posterior density for the mean matrix of
the matrix variate SSMESN distributions, by considering a matrix variate
normal distribution as its prior, that is an important result for this type of
distributions. Also, we used the obtained posterior density for estimating
in the multivariate linear regression and stress-strength models. Finally, we
compared different Bayes estimator of the stress-strength reliability of the
multivariate skew normal-Cauchy distributions by a simulation study.
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Mean Residual Life of Degrading Complex Systems with Intact
Component at Time t

Saberzadeh, Z.1 and Razmkhah, M.1

1 Department of Statistics, Ferdowsi University of Mashhad, Mashhad,
Iran

Abstract: This article investigates the mean residual life for a complex
k-out-of-n:G system that consists of n element each having two depen-
dent components under degradation performance. A flexible copula-based
multivariate model is considered for describing the dependence structure
within the components. Assuming degradation path of each component
comes from the Inverse Gaussian process, the mean residual life of a com-
plex k-out-of-n:G system with intact elements at time t is obtained based
on Frank copula. Moreover, a simulation study is provided to discuss how
does the dependence of components within each element affect the system
mean residual lifetime.

Keywords: Complex system, Copula function, Degradation performance,
Mean residual life.

1 Introduction

The study of mean residual life of a coherent system has gained a great
attention in reliability theory. The mean residual life function of coherent
systems is a very important concept in reliability theory and survival

1Saberzadeh, Z.: saberzadez@yahoo.com
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analysis. For a coherent system with lifetime T and components’ lifetimes
T1,T2, ...,Tn the usual mean residual life is defined by E(T−t|T > t). In ad-
dition to the classical definition of the mean residual life, different versions
of mean residual life functions have been defined for a coherent system.
For instance, Asadi and Bayramoglu [1] have defined the mean residual
life of a coherent system as E(T − t|T1:n > t), where Tr:n stand for the rth
smallest lifetime among T1,T2, ...,Tn. See, also Navarro [10] and Navarro
and Durante [9]. Eryilmaz et al. [5] studied the mean residual life of co-
herent systems consisting of multiple types of dependent components
Many modern products such as electrical and electromechanical products
have extremely high reliability, So the failures may not occur during short
time at normal conditions. In such situations, it is difficult to assess the
reliability of these products with traditional life tests. Fortunately, most of
the highly reliable products have characteristics whose their degradations
over time can be measured. Thus, we can provide useful reliability infor-
mation to assess the reliability of the modern products using degradation
data.

The stochastic process model treats degradation measurements as the re-
alization of a stochastic process, such as Inverse Gaussian (IG) process
[16, 21], wiener process [20, 7] and Gamma process [3, 4]. Using an
adaptive Wiener process model, Zhai and Ye [22] investigated the resid-
ual life prediction of deteriorating products. Nezakati and Razmkhah [13]
and Nezakati et al. [12] investigated reliability of k-out-of-n systems un-
der degradation performance. Most of previous studies has dealt with only
one performance characteristic or component failure mechanism level. In
recent years, due to the flexibility of copula function, the modeling of mul-
tiple degradation processes via copula function has received a lot of at-
tention [6]. For instance, Peng et al. [17] proposed a bivariate modeling
based on IG process via Gaussian copula and applied it on a degradation
dataset from heavy machine tools. Pan et al. [15] applied Frank copula
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with Wiener process as marginal. Wang et al. [19] studied the residual life
estimation based on bivariate non-stationary gamma degradation process
via Frank copula. Palayangoda and Ng [14] developed semiparametric and
nonparametric approaches to model bivariate degradation processes. All of
these studies, consider a single-element system with multiple components.
In practice, modern products usually have complex structure with many
functions. Bairamov [2] has considered systems that consist of n elements,
each containing two dependent components. In this work, we consider a
degrading complex k-out-of-n:G system with two components in each el-
ement and assume that the degradation of each component over time is
governed by an IG process. Moreover, we assume that the two components
are dependent and their dependency being characterized by Frank copula.
Under these assumptions, we study the MRL function of the complex k-
out-of-n:G system. Moreover, the effect of dependence structure on system
reliability is investigated. The rest of this paper is organized as follows. In
Section 2, some preliminaries are presented containing the IG process and
time-to-failure distribution. Section 3 elaborates the modeling framework
of a degrading k-out-of-n:G system with dependent degradation processes.
The mean residual life functions of these complex systems with intact com-
ponents at time t is investigated in section 4. Some graphical analyses are
provided in section 5 to demonstrate the sensitivity of the MRL function
with respect to dependence structure. Finally, some the proposed model is
described in details.

2 Preliminaries

In current work, a degradation process over time, is modeled through the
IG process. The IG process {X(t), t ≥ 0} is defined as the stochastic
process satisfying:
a) X(t) has independent increments.
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b) X(t) − X(s) follows an IG distribution IG(µ(Λ(t) −
Λ(s)),ν [Λ(t)−Λ(s)]2) for all t > s > 0,
where Λ(t) is a monotone increasing function and IG(a,b), a,b > 0,
denotes the IG distribution with mean a and variance a3/b. The pdf of the
IG(a,b) is

fX(x) =

√
b

2πx3 exp{− b(x−a)2

2a2x
}, x > 0,

and its cumulative distribution function (cdf) is given by

F(x|a,b) = Φ[

√
b
x
(
x
a
−1)]+ exp(

2b
a
)Φ[−

√
b
x
(
x
a
+1)], (1)

where Φ(.) is the standard normal cdf. Following convention, we let
Λ(0) = 0 and X(0) = 0, and thus X(t) follows IG(µΛ(t),ν(Λ(t))2).

In many engineering applications, the failure time T for an item is de-
fined as the time at which the degradation path first reaches a predeter-
mined threshold d. Consider the IG process {X(t), t ≥ 0} with X(t) ∼
IG(µΛ(t),ν(Λ(t))2). Because of the monotonicity property of the IG pro-
cess, the cdf of T can be readily obtained as following

P(T ≤ t) =P(X(t)≥ d) = 1−P(X(t)< d)

=1−
(

Φ[

√
ν

d
(

d
µ
−Λ(t))]+ exp(

2νΛ(t)
µ

)Φ[

√
ν

d
(

d
µ
+Λ(t))]

)
(2)

(Ye and Chen [21] and Wang and Xu [18]).

In this paper, we assume that the degradations of the components are de-
pendent and use a copula structure to model the dependency. A copula is
the function that connects the joint distribution with individual marginal
distribution functions. Let X = (X1,X2, ...,Xp)

T be a p-dimensional ran-
dom vector with marginal cdfs F1(x1), F2(x2), ..., Fp(xp) and H be their
joint cdf. According to Sklars theorem [11], there exists a unique copula
C(.) such that, for all x1,x2, ...,xp in R,

H(x1,x2, ...,xp) = C(F1(x1),F2(x2), ...,Fp(xp)) (3)
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It states any multivariate distribution can be decomposed into a copula
and its marginals. Thus, copula functions offers a much more flexible
method to study multivariate distributions. Due to different construction
routes, there are three commonly used classes of copulas- Elliptical copu-
las, Archimedean copulas, and extreme-value copulas. Among these cop-
ulas, Archimedean copulas have a wide application because they can be
constructed easily and can be extended from 2-dimension to p-dimension
when some conditions are satisfied [8]. One of the popular Archimedean
copulas is the so-called Frank copula. For bivariate case, it is given by

Cλ (u,v) =−
1
λ

ln
{

1+
(exp(−λu)−1)(exp(−λv)−1)

exp(−λ )−1

}
,

where λ ∈ (−∞,∞) \ {0} is an association parameter, which is used to
measure the dependency between two variables.

Consider a degrading complex k-out-of-n:G system, subject to degradation
over time. The system contains n elements such that each element has two
components. Suppose that elements work independently, but the degrada-
tion of both components of the ith element, X1

i (t) and X2
i (t), are dependent

stochastic processes for i = 1,2, ...,n. The following assumptions are con-
sidered throughout the paper to study such systems.
1) All components have increasing degradation paths and the hth compo-
nent fails when Xh(t) reaches or exceeds the given threshold value dh for
h = 1,2.
2) Degradations of hth component is distributed with the IG process with
the cdf FXh(t)(.;θh) and the pdf fXh(t)(.;θh)) at time t for h = 1,2, where θh

stands for the parameters of the hth degradation process in each element.
3) The degradation of two components are dependent to each other by cop-
ula Cλ (.) as follows

FX1(t),X2(t)(d1,d2)

=Cλ (FX1(t)(d1;θ1),FX2(t)(d2;θ2))
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=− 1
λ

ln
{

1+
(exp(−λFX1(t)(d1;θ1))−1)(exp(−λFX2(t)(d2;θ2))−1)

exp(−λ )−1

}
(4)

where λ is dependence parameter and FXh(t)(.;θh) for h = 1,2 can be ob-
tained from (2).

3 Degrading complex k-out-of-n:G system

Consider a system consisting of n elements such that each element have
two dependent components. In such a system, we assume that the ele-
ments are independent and identically distributed. Each element can be
represented by a series or parallel structure, whereas the system has a k-
out-of-n:G structure, which functions if and only if at least k of its elements
function. Suppose all components have increasing degradation paths over
time. Typically, we define a vector X(t) = (X1(t),X2(t)) to indicate the
performance measurement for each element at time t. Further denote a
vector d = (d1,d2), representing the failure threshold; i.e. if Xh(t) ≥ dh,
the hth component is considered to be failed for h = 1,2. Denote the fail-
ure time of the hth component by T h, h = 1,2. So using (2), the reliability
function for the hth component in each element, for h = 1,2 is calculated
as

Rh(t) = P(T h > t) = P(Xh(t)< dh).

Note that, when the components in each element are series, the element
reliability is given by

R(t) =
2

∏
h=1

P(Xh(t)< dh) = R1(t) R2(t),

if all components are independent with each other. Similarly, for parallel
components, the element reliability is given by

R(t) = 1−
2

∏
h=1

(1−P(Xh(t)< dh)) = R1(t)+R2(t)−R1(t) R2(t).
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But, when the component are dependent, we use a copula based model to
describe the reliability of complex k-out-of-n systems. First of all note that
when two components of each element have a series structure, then the
reliability of the elements is given by

R(t) = P(T > t) = P(T 1 > t,T 2 > t) =Cλ (FX1(t)(d1;θ1),FX2(t)(d2;θ2)). (5)

Similarly, when the components of an element have a parallel structure,
then the reliability of that element is derived as

R(t) = P(T > t) = 1−P(T ≤ t) = 1−P(T 1 ≤ t,T 2 ≤ t)

= 1−C̄λ (FX1(t)(d1;θ1),FX2(t)(d2;θ2)). (6)

Here, the marginal reliability in Equation (5) and (6) can be obtained from
(2).

4 MRL function of the complex k-out-of-n:G system with intact compo-

nents at time t

In this section, the MRL function of a complex k-out-of-n:G system is
studied in two cases, whether the components in each element are con-
nected in series or parallel. By definition, the life time of such a system
is defined as Tn−k+1:n. The MRL function of the k-out-of-n:G system with
intact components at time t is defined as

Φk:n(t) = E(Tn−k+1:n− t|T1:n > t) = E(T t
n−k+1:n),

where T t
n−k+1:n is a conditional random variable defined as

T t
n−k+1:n = {Tn−k+1:n− t| non of the components has failed at time t}.

4.1 MRL function of the complex k-out-of-n:G series system

In a complex k-out-of-n:G series system, the components in each element
are connected in series. Thus, the failure time of a element in such a sys-
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tem is minimum failure time of two components. In other words, the first
component failure leads to the failure of the element. To calculate Φk:n(t),
we need the survival function of conditional random variable T t

n−k+1:n.
Lemma 1: The survival function of conditional random variable T t

k:n for a
k-out-of-n:G series system is given by

P(T t
n−k+1:n > t ′)

= [Cλ (FX1(t)(d1;θ1),FX2(t)(d2;θ2))]
−n

×
{ n

∑
i=n−k+1

(
n
i

)
[Cλ (FX1(t+t ′)(d1;θ1),FX2(t+t ′)(d2;θ2))]

i

[Cλ (FX1(t)(d1;θ1),FX2(t)(d2;θ2))−Cλ (FX1(t+t ′)(d1;θ1),FX2(t+t ′)(d2;θ2))]
n−i
}
.

(7)

Proof : Let us denote the lifetimes of the elements of a complex system by
T1, ...,Tn, which are independent and identically distributed random vari-
ables. By definition , we have

P(T t
n−k+1:n > t ′)

= P(Tn−k+1:n− t > t ′|T1:n > t)

=
P(Tn−k+1:n− t > t ′,T1:n > t)

P(T1:n > t)

= P(T1 > t)−n
n

∑
i=n−k+1

(
n
i

)
P(exactly i of T ′s are > t + t ′,T1 > t, ...,Tn > t)

= P(T1 > t)−n
n

∑
i=n−k+1

(
n
i

)
(P(T1 > t + t ′))i

(P(t < T1 < t + t ′))n−i

= P(T1 > t)−n
n

∑
i=n−k+1

(
n
i

)
(P(T1 > t + t ′))i

(P(T1 > t)−P(T1 > t + t ′))n−i
,

where P(T1 > t) can de obtained from (5). Hence, the proof is complete.

Therefore, the MRL function of the complex k-out-of-n:G series system
by using lemma 1, is given as

Φk:n(t)
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= [Cλ (FX1(t)(d1;θ1),FX2(t)(d2;θ2))]
−n

×
{ n

∑
i=n−k+1

(
n
i

)∫
∞

0
[Cλ (FX1(t+t ′)(d1;θ1),FX2(t+t ′)(d2;θ2))]

i

[Cλ (FX1(t)(d1;θ1),FX2(t)(d2;θ2))−Cλ (FX1(t+t ′)(d1;θ1),FX2(t+t ′)(d2;θ2))]
n−idt ′

}
.

(8)

4.2 MRL function of the complex k-out-of-n:G parallel system

The complex k-out-of-n:G parallel system is another complex system,
where components are connected in parallel. The failure time of a parallel
element is the maximum failure time of the components.
Lemma 2: The survival function of conditional random variable T t

n−k+1:n

for a k-out-of-n:G parallel system is given by

P(T t
n−k+1:n > t ′)

= [1−C̄λ (FX1(t)(d1;θ1),FX2(t)(d2;θ2))]
−n

×
{ n

∑
i=n−k+1

(
n
i

)
[1−C̄λ (FX1(t+t ′)(d1;θ1),FX2(t+t ′)(d2;θ2))]

i

[C̄λ (FX1(t+t ′)(d1;θ1),FX2(t+t ′)(d2;θ2))−C̄λ (FX1(t)(d1;θ1),FX2(t)(d2;θ2))]
n−i
}
.

(9)

Using Lemma 2, the MRL function of the k-out-of-n:G parallel system
with intact components at time t, is given by

E(T t
n−k+1:n) =

∫
∞

0
P(T t

n−k+1:n > t ′)dt ′,

where P(T t
n−k+1:n > t ′) is calculated in (9).



The 7th Seminar on Reliability Theory and its Applications 301

5 Sensitive analysis

In this section, the sensitivity of the MRL function of a complex 1-out-
of-6:G series system is provided for different values of t and λ . To do
this, let a power transformation on the time scale such that Λ(t;γh) = tγh

for h = 1,2. Also, assume the Frank copula with parameter λ as the de-
pendence structure of the two components of each element. Thus, the
model parameters are given as θ1 = (ν1,µ1,γ1), θ2 = (ν2,µ2,γ2) and λ .
Here, we consider the parameters of marginal degradation processes as
θ1 = (1,2,0.5), θ2 = (2,2,0.4) and λ = 2. Also, we assume that the degra-
dation thresholds are d1 = 3 and d2 = 4. Figure 1 (the left hand plot) that
the MRL function of a complex 1-out-of-6:G series system increases for
0 < t < 7.41, and decreases for t > 7.41. Further, to demonstrate how the
dependence parameter effects the MRL function, we provide the plot of
the MRL function with respect to λ at a fixed point t = 12 in Figure 1
(the right hand plot). It is observed that the MRL function increases with
respect to λ .

Figure 1: The MRL function of the complex 1-out-of-6:G series system w.r.t t and λ .
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6 Conclusion

We have studied the MRL function for a degrading complex k-out-of-n:G
system consisting of n elements, each having two dependent components
under degradation performance. We assumed that degradation paths come
from the IG process and the dependency between components was mod-
eled by Frank copula. A sensitivity analysis was done and the behavior of
the MRL function in a special example of complex systems was studied.
The results of this research are in progress. Some other copulas may be
considered to model the dependency of the components. Also, the MRL
function of the complex systems may also be investigated under general
path degradation model.

References

[1] Asadi, M. and Bayramoglu, I. (2006), The mean residual life function
of a k-out-of-n structure at the system level. IEEE Transactions on Re-

liability, 55(2), 314-318.

[2] Bairamov, I. (2013), Reliability and mean residual life of complex sys-
tems with two dependent components per element, IEEE Transactions

on Reliability, 62, 276-285.

[3] Cholette, M.E., Yu, H., Borghesani, P., Ma, L. and Kent, G. (2019),
Degradation modeling and condition-based maintenance of boiler heat
exchangers using gamma processes. Reliability Engineering and Sys-

tem Safety, 183, 184-196.

[4] Dong, Q. and Cui, L. (2019), A study on stochastic degradation pro-
cess models under different types of failure thresholds. Reliability En-

gineering and System Safety, 181, 202-212.



The 7th Seminar on Reliability Theory and its Applications 303

[5] Eryilmaz, S., Coolen, F.P. and CoolenMaturi, T. (2018), Mean resid-
ual life of coherent systems consisting of multiple types of dependent
components. Naval Research Logistics (NRL), 65(1), 86-97.

[6] Fang, G., Pan R., Hong Y. (2018), A copula-based multivariate degra-
dation analysis for reliability prediction. Proceedings of the Annual

Reliability and Maintainability Symposium (RAMS). 1-7.

[7] Gao, H., Wu, S., Zeng, Q., Li, P. and Guan, W. (2018), Effects of
exogenous -aminobutyric acid treatment on browning and food-borne
pathogens in fresh-cut apples. Postharvest Biology and Technology,
146, 1-8.

[8] Li, C. and Hao H. (2016), A Copula-based Degradation Modeling and
Reliability Assessment, Engineering Letters, 24, 295-300.

[9] Navarro, J. and Durante, F. (2017), Copula-based representations for
the reliability of the residual lifetimes of coherent systems with depen-
dent components. Journal of Multivariate Analysis, 158, 87-102.

[10] Navarro, J. (2018), Distribution-free comparisons of residual life-
times of coherent systems based on copula properties. Statistical Pa-

pers, 59(2), 781-800.

[11] Nelsen, RB. (2007), An introduction to copulas, Springer Science and
Business Media.

[12] Nezakati, E., Razmkhah, M. and Haghighi, F. (2019), Reliability
analysis of a k-out-of-n:F system under a linear degradation model
with calibrations, Annals of the Institute of Statistical Mathematics,
71, 537- 552.

[13] Nezakati, E. and Razmkhah, M. (2020), Reliability analysis of a load
sharing k-out-of-n:F degradation system with dependent competing
failures. Reliability Engineering and System Safety, 203, 107076.

[14] Palayangoda, L. K. and Ng, H.K.T. (2021), Semiparametric and non-
parametric evaluation of first-passage distribution of bivariate degrada-
tion processes. Reliability Engineering and System Safety, 205.



Saberzadeh, Z. and Razmkhah, M. 304

[15] Pan, Z., Balakrishnan, N., Sun, Q. and Zhou, J. (2013), Bivariate
degradation analysis of products based on Wiener processes and cop-
ulas. Journal of Statistical Computation and Simulation, 83(7), 1316-
1329.

[16] Peng, C.Y. (2015), Inverse Gaussian processes with random effects
and explanatory variables for degradation data. Technometrics, 57(1),
100-111.

[17] Peng, W., Li, Y.F., Yang, Y.J., Zhu, S.P. and Huang, H.Z. (2016),
Bivariate analysis of incomplete degradation observations based on in-
verse Gaussian processes and copulas. IEEE Transactions on Reliabil-

ity, 65(2), 624-639.

[18] Wang, X. and Xu, D. (2010), An inverse Gaussian process model for
degradation data. Technometrics, 52(2), 188-197.

[19] Wang, X., Balakrishnan, N., Guo, B. and Jiang, P. (2015), Resid-
ual life estimation based on bivariate non-stationary gamma degrada-
tion process. Journal of Statistical Computation and Simulation, 85(2),
405-421.

[20] Wen, Y., Wu, J., Das, D. and Tseng, T.L.B. (2018), Degradation mod-
eling and RUL prediction using Wiener process subject to multiple
change points and unit heterogeneity. Reliability Engineering and Sys-

tem Safety, 176, 113-124.

[21] Ye, Z.S. and Chen, N. (2014), The inverse Gaussian process as a
degradation model. Technometrics, 56(3), 302-311.

[22] Zhai, Q. and Ye, Z.S. (2017), RUL prediction of deteriorating prod-
ucts using an adaptive Wiener process model. IEEE Transactions on

Industrial Informatics, 13(6), 2911-2921.



The 7th Seminar on Reliability Theory and its Applications

Quantile Residual Life Estimator in an Ordered Context

Shafaei Noughabi, M.1

1 Department of Statistics, University of Gonabad, Gonabad, Iran

Abstract: In this paper we propose estimator of quantile residual life for
two ordered quantile residual life. It has been shown that this estimator
is strongly uniformly consistent and asymptotically unbiased. Simulation
results indicate that both of the restricted estimators improve on the empir-
ical (unrestricted) estimators in terms of mean squared error, uniformly at
all quantiles, and for a variety of distributions.

Keywords: Empirical estimator, Quantile residual life, Stochastic order.

1 Introduction

Let T1 and T2 be random variables representing the lifetimes of two pop-
ulations. These could be patients undergoing two different treatments or
the times to recurrence of cancer after the patients have been treated with
different kinds of therapies. In the industrial engineering context, T1 and
T2 could represent the lifetimes of two different brands of an appliance.
Suppose that we are confronted with the problem of comparing these two
populations to see which one has longer life. A naive approach would be
to just compare the means of the two random variables. Rather than basing
the decision on two single points, one could compare T1 and T2 under a
stochastic ordering restriction.

1Shafaei Noughabi, M.: mohamad.shafaee@gmail.com
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The mean residual life (MRL) function that is associated with T is defined
as

m(t) =

{
E(T − t|T ≥ t) t < u

0 t ≥ u,

when the expectation above exists. Comparisons of two random variables
in terms of their mean residual life functions leads to the mean residual

life order. This ordering is weaker than the hazard rate ordering but it is
stronger than the variability ordering. [1] is a reference text in this topic.

Suppose that M1 and M2 are two MRL functions, e.g., those corresponding
to the control and the experimental groups in a clinical trial. It may be rea-
sonable to assume that the remaining life expectancy for the experimental
group is higher than that of the control group at all times in the future,
i.e., M1(t) ≤M2(t) for all t. However, randomness of data will frequently
show reversals of this order restriction in the empirical observations. [2]
presented two estimators of the MRL subject to such an order restriction.

The main contribution of this paper is to propose two estimators of two
(quantile residual life) QRL functions under an order restriction similarly
to what [2] did for the MRL functions. The advantage of our estimators is
that they are based on the QRL function instead of the MRL: The MRL
function sometimes has weaknesses that may prevent its use ([3]). For ex-
ample, the mean residual life function may not exist. Or, even when it does
it may have some practical shortcomings, especially in situations where the
data are censored, or when the underlying distribution is skewed or heavy-
tailed. In such cases, either the empirical mean residual life function cannot
be calculated, or a single long-term survivor can have a marked effect upon
it which will tend to be unstable due to its strong dependence on very long
durations. Besides, in an experiment it is often impossible or impractical
to wait until all items have failed. For those reasons, it is more convenient
to consider the median, or any other quantiles, of the residual life instead,
since it is less sensitive to outliers or censored data.
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The α-QRL function associated to T , is the al pha-quantile of Tt = T |T ≥ t

and can be expressed as

qα(t) = inf{x : R(t + x)≤ ᾱR(t)}, (1)

with ᾱ = 1−α . When R is a continuous function, inequality in (1) re-
duces to equality and, in a more simple way, the previous expression can
be rewritten as

qα(t) = R−1(ᾱR(t))− t,

where R−1(p) = inf{x : R(t)≤ p}.

[3] and [4] explained in detail the potential advantages of the median resid-
ual lifetime over the mean residual lifetime and, recently, [5] extended the
quantile residual life function to the multivariate context.

The α-quantile residual life function, denoted by qα , is defined for any
t < u by letting qα(t) be the α-quantile of Tt , 0 < α < 1. In [6] a family
of stochastic orders of random variables defined via the comparison of
their quantile residual life functions was introduced. The need for a tool
to compare the α-QRLs related to different populations has been widely
motivated in [7] and [8].

This paper is organized as follows. The estimators of two ordered quan-
tile residual life functions are proposed in Section 2. These estimators are
shown to be strongly uniformly consistent and asymptotically unbiased in
Section 3. In order to analyse the bias and the mean squared error of the
new estimators, a simulation simulation study has been carried out. The
results are presented in Section 4. Finally, in Section 5 we illustrate the
behaviour of our estimator with a real data example and in Section 7 the
main conclusions are derived.
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2 The estimators

Let T1 and T2 be random variables representing the lifetimes of two pop-
ulations with reliability functions R1 and R2 and α-QRL functions qα,1

and qα,2, respectively. Suppose that we are confronted with the problem
of comparing these populations to see which one has longer life based on
a particular α-QRL function, α ∈ (0,1). In this section we describe the
construction of estimators of two ordered quantile residual life functions
based on the empirical estimator whose definition we recall below.

Let {T1, · · · ,Tn} be an independent and identically distributed sample of T .
A natural empirical counterpart of qα is the sample α-quantile residual life
function, which is given by

q̂α(t) = F̂−1(α +(1−α)F̂(t))− t, t < Tn, (2)

where F̂ denotes the empirical cumulative distribution function con-
structed from the sample and Tn is the largest order statistic. For t ≥ Tn,
q̂α(t) = 0.

Note that q̂α is a piecewise linear function with jump discontinuities. It
consists of line segments with slope equal to−1 with jump discontinuities.
The estimator in (2) was studied by [9]. Further properties were provided
by [10], [12], [13], and [11].

In order to explain the construction of the proposed estimators we must
differentiate between two scenarios. The first one in which one of the QRL
functions is known and then when the two of them are unknown.

2.1 The 1-sample case

Suppose that qα,2 is known and qα,1(t) ≤ qα,2(t) for all x. Then, the re-
stricted estimator of qα,1 is defined as

q̂∗α,1(t) = q̂α,1(t)∧qα,2(t), (3)
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where q̂α,1 is the estimator given in (2) for T1 given the ordered sample

{T11,T12, ...,T1n1}.

Now, suppose that the order restriction is only on an interval, i.e., qα,1(t)≤
qα,2(t) on [t1, t2). The quantile residual life function cannot have a jump
down and it should satisfy q′α(t)≥−1 where it exists, so we can define the
estimator of qα,1, as follows. If q̂α,1(t1)≤ qα,2(t1), we define

q̂∗α,1(t) =


q̂α,1(t), t < t1
q̂α,1(t)∧qα,2(t), t1 ≤ t < t2
q̂α,1(t), t ≥ t2,

and if q̂α,1(t1)> qα,2(t1), we define

q̂∗α,1(t) =


q̂α,1(t), t < c

qα,2(t1)+(t1− t), c≤ t ≤ t1
q̂α,1(t)∧qα,2(t), t1 ≤ t < t2
q̂α,1(t), t ≥ t2,

where c = max{Ti : Ti < t1} and c = 0 when t1 ≤ T11. See Figure 1.

Similarly, with the restriction qα,1(t) ≥ qα,2(t) (reversed direction), when
q̂α,1(t2)≥ qα,2(t2), the estimator of qα,1(t) is defined by

q̂∗α,1(t) =


q̂α,1(t), t < t1
q̂α,1(t)∨qα,2(t), t1 ≤ t < t2
q̂α,1(t), t ≥ t2,

and when q̂α,1(t2)< qα,2(t2), the estimator is defined to be

q̂∗α,1(t) =


q̂α,1(t), t < t1
q̂α,1(t)∨qα,2(t), t1 ≤ t < t2
qα,2(t2)+(t2− t), t2 ≤ t < c

q̂α,1(t), t ≥ c,

where c = min{Ti : Ti > t2}.
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Figure 1: Illustration of q̂∗
α,1 in the one sample context

2.2 The 2-sample case

In this context we have two samples {T11,T12, ...,T1n1} and
{T21,T22, ...,T2n2}. Now, assume that the second sample has derived
from a population with greater α-QRL function, i.e., qα,1(t)≤ qα,2(t) for
all t. Here, we use the same approach as the non parametric maximum
likelihood estimator for two stochastically ordered unknown survival
functions as [2]. See references therein. First, we estimate the common
α-QRL, qα(t), by pooling two samples and then estimate each of qα,1(t)

and qα,2(t) by proper ordering restrictions. The formulas have been given
only for the case where qα,1(t) ≤ qα,2(t) everywhere. The case of order
restriction on an interval only, can be done exactly as in the 1-sample case
since our estimation procedure reduces to two separate 1-sample cases.

The common reliability function can be estimated by

R̂(t) =
n1R̂1(t)+n2R̂2(t)

n1 +n2
,

where R̂i(t) is the empirical reliability (survival) function of the ith sample
and niR̂i(t) = ∑

ni
j=1 I(Ti j > t). By Proposition 1, we know that

q̂α(t) = ŵ1(t)q̂α,1(t)+ ŵ2(t)q̂α,2(t)
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where q̂α,i(t) = R̂−1
i (ᾱR̂i(t)),

ŵ1(t) =
R̂−1

2 (ᾱR̂2(t))− R̂−1(ᾱR̂(t))

R̂−1
2 (ᾱR̂2(t))− R̂−1

1 (ᾱR̂1(t))
,

and ŵ2(t) = 1− ŵ1(t). Clearly, 0 ≤ ŵ1(t), ŵ2(t) ≤ 1. Then, the restricted
estimator of qα,1(t) under restriction qα,1(t)≤ qα,2(t) is defined and sim-
plified below.

q̂∗α,1(t) = q̂α,1(t)∧ q̂α(t)

= ŵ1(t)q̂α,1(t)+ ŵ2(t)
(

q̂α,1(t)∧ q̂α,2(t)
)

= q̂α,1(t)− ŵ2(t)
(

q̂α,1(t)− q̂α,2(t)
)

I(q̂α,1(t)> q̂α,2(t)).

(4)

Similarly, the restricted estimator of qα,2(t) under this restriction is

q̂∗α,2(t) = q̂α,2(t)∨ q̂α(t)

= ŵ2(t)q̂α,2(t)+ ŵ1(t)
(

q̂α,1(t)∨ q̂α,2(t)
)

= q̂α,2(t)+ ŵ1(t)
(

q̂α,1(t)− q̂α,2(t)
)

I(q̂α,1(t)> q̂α,2(t)).

(5)

The 1-sample estimator in (3) can be seen as the limit of the estimator in
(5) as n2→ ∞.

Figure 2 is included for illustration purpose.

3 Properties of the estimators

The following results show the strong uniform consistency and the asymp-
totic unbiasedness of the estimator.

Proposition 1. The estimators q̂∗
α,1(t) and q̂∗

α,2(t) defined in (4) and (5)
are consistent.

Proof. Let b≤ u and u≤∞ shows the upper bound of the range of T . Then,
we have

sup
0≤t≤b

|q̂∗α,1(t)−qα,1(t)|≤ sup
0≤t≤b

|q̂∗α,1(t)− q̂α,1(t)|+ sup
0≤t≤b

|q̂α,1(t)−qα,1(t)|.
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Figure 2: Illustration of q̂∗
α,1 (q̂∗

α,2) in the two samples context on the left (rigth) panel

The second expression in the right hand side of the inequality, converges to
zero, see [örg87]. To show that the first expression also converges to zero,
note that

sup
0≤t≤b

|q̂∗α,1(t)− q̂α,1(t)|= sup
0≤t≤b

|ŵ2(t)
(

q̂α,1(t)− q̂α,2(t)
)

I(q̂α,1(t)> q̂α,2(t))|.

If n1 → ∞, and n2 is finite then sup0≤t≤b|ŵ2(t)|→ 0, so does the whole
expression. If n1,n2→ ∞, then

sup
0≤t≤b

|q̂α,1(t)− q̂α,2(t)|→ 0, on {t : qα,1(t) = qα,2(t)},

and

sup
0≤t≤b

I(q̂α,1(t)> q̂α,2(t))→ 0, on {t : qα,1(t)< qα,2(t)}.

So, sup0≤t≤b|q̂∗α,1(t)− qα,1(t)|→ 0, i.e., q̂∗
α,1(t) is uniformly consistent.

Similarly, we can show that q̂∗
α,2(t) is uniformly consistent.

Proposition 2. The estimators q̂∗
α,1(t) and q̂∗

α,2(t) defined in (4) and (5)
are asymptotically unbiased as n1,n2→ ∞.



Shafaei Noughabi, M. 313

Proof. Let t be fixed. We know that E(q̂α,1(t)) → qα,1(t), we refer to
[örg87]. Now, let

∆ = ŵ2(t)
(

q̂α,1(t)− q̂α,2(t)
)

I(q̂α,1(t)> q̂α,2(t)).

To show asymptotic unbiasedness, it is sufficient to show that E(∆)→ 0.
By Holder inequality we have

E(∆)≤ (E(∆p
1))

1
p(P(q̂α,1(t)> q̂α,2(t)))

1
q ,

where ∆1 = ŵ2(t)(q̂α,1(t)− q̂α,2(t)). But P(q̂α,1(t)> q̂α,2(t)) converges to
zero since convergence almost surely implies convergence in probability.

4 Simulation

In a simulation study we have analysed the bias and the mean squared error
(MSE) of the restricted estimators q̂∗

α,1(t) and q̂∗
α,2(t) we have proposed

and compare them to those of the empirical estimators q̂α,1(t) and q̂α,2(t),
respectively. The quantile α has been set to 0.5, which corresponds to the
median residual life function. For the simulations we have considered the
Weibull distribution whose reliability function is

R(t) = e−θ tβ

, t ≥ 0,θ > 0,β > 0,

The parameters of the Weibull distributions have been selected such that
both increasing and decreasing median residual life functions would be in-
cluded in the study. The results have been summarized in Tables 1. Every
row in each table shows the results for one run in which r = 5000 replicates
of samples of sizes n1 and n2, respectively, were considered. In particular,
the results for n1 = n2 = 20 and 50 are presented. For every two samples
{T11,T12, ...,T1n1} and {T21,T22, ...,T2n2} the empirical estimators, q̂α,1(t)

and q̂α,2(t), and the restricted estimators, q̂∗
α,1(t) and q̂∗

α,2(t), were com-
puted on five deciles (0.1, 0.2, 0.5, 0.8 and 0.9). Then, the bias and the
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MSE for these four estimators were calculated. The tables also show the
ratio between the MSE for the empirical estimator and the MSE of the re-
stricted one. Although the bias of the unrestricted estimators is lower, the
ratio of the MSEs is always larger than 1, which indicates that the restricted
estimators outperform the usual ones in terms of the MSE.

Table 1: Simulation results for two Weibull distributions: Ti with parameters (θi,βi) (i = 1,2).

q B(q̂α,1) B(q̂∗
α,1)

MSE(q̂α,1)

MSE(q̂∗
α,1)

B(q̂α,2) B(q̂∗
α,2)

MSE(q̂α,2)

MSE(q̂∗
α,2)

θ1 = 0.015,β1 = 1.2

θ2 = 0.012,β2 = 1.2

n1 = n2 = 20

0.1 -0.21955 -1.18367 1.32724 -0.11778 1.00295 1.19037

0.2 -0.20173 -1.23694 1.32637 -0.14778 1.04120 1.18599

0.5 -0.13246 -1.65304 1.48407 -0.08173 1.57764 1.16790

0.8 -0.33768 -2.84620 1.77574 -0.00086 2.63429 1.06045

0.9 -0.9894 -4.63811 1.99626 -1.09960 2.25925 1.02442

θ1 = 0.015,β1 = 1.2

θ2 = 0.012,β2 = 1.2

n1 = n2 = 50

0.1 -0.04725 -0.43781 1.20771 -0.22714 0.23333 1.18479

0.2 -0.04233 -0.48236 1.21101 -0.19048 0.32533 1.18715

0.5 -0.03008 -0.68932 1.30057 -0.11209 0.69506 1.18851

0.8 -0.12264 -1.52730 1.54755 0.07010 1.57990 1.12906

0.9 -0.29556 -2.56233 1.78730 -0.35305 1.80388 1.06816

θ1 = 10,β1 = 0.9

θ2 = 8,β2 = 0.9

n1 = n2 = 20

0.1 0.00042 -0.00274 1.39300 0.00015 0.00345 1.15775

0.2 0.00071 -0.00298 1.49222 0.00017 0.00391 1.15340

0.5 0.00026 -0.00517 1.52930 0.00027 0.00607 1.14107

0.8 0.00015 -0.01066 1.89907 0.00073 0.01171 1.04012

0.9 -0.00428 -0.01795 1.87934 -0.00369 0.01118 1.01153

θ1 = 10,β1 = 0.9

θ2 = 8,β2 = 0.9

n1 = n2 = 50

0.1 0.00033 -0.00080 1.25667 -0.00038 0.00102 1.15251

0.2 0.00052 -0.00095 1.26994 -0.00045 0.00130 1.17200

0.5 0.00030 -0.00211 1.36150 -0.00069 0.00231 1.18272

0.8 0.00050 -0.00528 1.62210 -0.00039 0.00562 1.11296

0.9 0.00023 -0.00986 2.07420 0.00055 0.01030 1.06949
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Abstract: In this paper, we study the estimation of R = P[Y < X ], also
so-called the stress-strength model, when both X and Y are two indepen-
dent random variables with the generalized linear failure rate distributions
when scale parameters are known and common. We address the maximum
likelihood estimator (MLE) of R and the associated asymptotic confidence
interval. The Bayes estimates of R and the associated credible intervals
are also investigated. An extensive computer simulation is implemented to
compare the performances of the proposed estimators.

Keywords: Bayes estimator, Generalized linear failure rate distribution,
Maximum likelihood estimator.

1 Introduction

The topic of inference on R = P[Y < X ] - usually referred to as the stress-
strength model has obtained wide attention in the literature, including qual-
ity control, engineering statistics, reliability, medicine, psychology, bio-
statistics, stochastic precedence, and probabilistic mechanical design (see
[5], for a comprehensive review). For instance, in a clinical study, Y and X

1Shahsanaei, F.: f.shahsanaei@shhut.ac.ir
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can be assumed as the outcomes of a treatment and a control group, re-
spectively, then the following quantity R = P[Y < X ] can be considered
as the effectiveness of the treatment ([5]). In this case, (1−R) measures
the effectiveness of the treatment. Alternatively, for diagnostic tests used
to distinguish between diseased and non-diseased patients, the area under
the receiver operating characteristics (ROC) curve, based on the sensitivity
and the complement to specificity at different cut-off points of the range of
possible test values, is equal to R (see [4]).

Another important use of R = P(Y < X) is in reliability contexts, in par-
ticular in mechanical reliability of a system, where Y is the strength of a
component which is subject to stress X , then R is a measure of system
performance, and (1−R) measurs the chance that the system fails. In this
situation, the system will fail, if at any time the applied stress is greater
than its strength.[5] also present the theoretical and practical results on the
theory and applications of the stress-strength relationships in industrial and
economic systems.

In reliability context and life science, inferences about R where X and Y

are independently distributed are still subject of interest. In this context,
the stress-strength model describes the life of a component which has a
random strength X and is subjected to random stress Y . The component
fails at the instant that the stress applied to it exceeds the strength and the
component will function satisfactorily whenever Y < X . Thus R = P(Y <

X) is a measure of component reliability.

Estimation of R=P(Y <X), when X and Y are random variables following
the specified distributions has been extensively discussed in the literature
in both parametric and non-parametric framework. This quantity can be
obviously seen as a function of the parameters of the distribution of the
random vector (X ,Y ) and could be calculated in the closed form for a lim-
ited number of cases ([5]; [10]; [2]) . For instance, the estimation of R when
X and Y are independent and normally distributed has been considered by
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several authors including [3] , [12] and [4].

[13] reported a list of papers related to the estimation problem of R when X

and Y are independent and follow a class of life-time distributions includ-
ing Exponential, bivariate Exponential, generalized exponential, Gamma
distributions, Burr type X model, Weibull distribution, and among others.

The rest of the paper is organized as follows. We briefly introduce the
Generalized Linear Failure Rate (GLFR) distribution and study its rele-
vant properties to this study in Section 2. We devote Section 3 to study
the estimation of R when the scale parameters of both distributions are
common and known. In this section, we derive the ML estimator, Bayes
estimators of the stress-strength model, their corresponding confidence or
credible intervals and other quantities of interests.

2 Generalized Linear Failure Rate Distribution

It is well known that the exponential, generalized exponential or Rayleigh
distribution are among the most commonly used distributions for analyzing
lifetime data. These distributions have several desirable properties and nice
physical interpretations. They can be used quite effectively in modelling
strength and general lifetime data. [6] used different methods to estimate
the parameters of the generalized Rayleigh on the observed data. In ana-
lyzing lifetime data, the exponential, Rayleigh, linear failure rate or gen-
eralized exponential distributions are normally used. It is apparent that the
exponential distribution can be only used for the constant hazard function
whereas Rayleigh, linear failure rate and generalized exponential distribu-
tions can be used for the monotone (increasing in case of Rayleigh or linear
failure rate and increasing/ decreasing in case of generalized exponential
distribution) hazard functions. In addition, in many practical applications,
it is required to apply the non-monotonic function such as bathtub shaped
hazard function ([8]). In this paper we use a newly developed distribution
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by [15] which generalizes the well known exponential distribution, linear
failure rate distribution, generalized exponential distribution, and general-
ized Rayleigh distribution (also known as Burr Type X distribution). They
called it generalized linear failure rate distribution with three parameters
(a,b,α) and denoted by GLFRD(a,b,α). The probability density function
(pdf) of GLFRD(a,b,β ) is given by

fX(a,b,α)(x) = α(a+bx)e−(ax+b
2x2)(1− e−(ax+b

2x2))α−1 ;α > 0 x≥ 0

The corresponding cumulative distribution function is as follows

FX(x) = (1− e−(ax+b
2x2))α (1)

where a,b≥ 0 are such that a+b > 0.

This distribution has increasing, decreasing or bathtub shaped hazard rate
functions and it also generalizes many well known distributions includ-
ing the traditional linear failure rate distributions, such as, generalized ex-
ponential (GED(a,α)) and generalized Rayleigh (GRD(b,α)) by putting
b = 0 and a = 0, respectively.

This distribution is verified to have a decreasing or unimodal pdf. Figure
1 shows some patterns of the pdf of GLFRD(a,b,α), which may have a
single mode or no mode at all. In addition, when α > 1, the hazard rate of
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Figure 1: Different shapes of pdf of the GLFR distribution, including unimodal pdf
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this distribution is increasing, if α < 1, the associated hazard rate is either
decreasing if b= 0 or inverted bathtub if b> 0, and finally when α = 1, the
hazard rate is either increasing if b > 0 or constant if b = 0. These patterns
are shown in Figure 2 for differen values of the parameters.
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Figure 2: Different shapes of hazard rate function of the GLFR distribution

[14] studied the statistical properties of this distribution and provided some
nice physical interpretations. The maximum likelihood estimates (MLEs)
of the corresponding parameters appeared to not have the explicit forms,
and they can be obtained only by solving two non-linear equations.

3 Estimation of R with known scale parameters

In this section, the main aim is the estimation of R = P[Y < X ], where
independent random variables X and Y follow the Generalized Linear

Failure Rate distributions with the known common scale parameters, that
is, X ∼ GLFRD(a,b,α) and Y ∼ GLFRD(a,b,β ). We wish to derive
the MLE of R, its associated confidence intervals, Bayes estimates of R,
the corresponding credible interval and study their properties. The stress-
strength parameter, R is defined as

R = P[Y < X ] =
∫

∞

0
P(Y < X |X = x) fX(x)dx
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=
∫

∞

0
α(a+bx)e−(ax+b

2x2)(1−e−(ax+b
2x2))α−1(1−e−(ax+b

2x2))β dx=
α

α +β

(2)

3.1 MLE of R

In this section, we consider the estimation of R when (a,b) are known, and
without loss of generality, we assume that (a,b) = (1,2). Let X1,X2, . . . ,Xn

be a random sample from GLFR(1,2,α) and Y1,Y2, . . . ,Ym be a random
sample from GLFR(1,2,β ). To compute the MLE of R, the corresponding
log-likelihood of the observed sample is given by

`(α,β )= n lnα+
n

∑
i=1

ln(1+2xi)+(α−1)
n

∑
i=1

ln(1−e−(xi+x2
i ))−

n

∑
i=1

(xi+x2
i )

+m lnβ +
m

∑
j=1

ln(1+2y j)+(β−1)
m

∑
j=1

ln(1−e−(y j+y2
j))−

m

∑
j=1

(y j+y2
j) (3)

The MLEs of (α , β ) denoted by (α̂ , β̂ ) can be derived by solving the
following equations

∂`

∂α
=

n
α
+

n

∑
i=1

ln(1− e−(xi+x2
i ))

∂`

∂β
=

m
β
+

m

∑
j=1

ln(1− e−(y j+y2
j))

Consequently, (α̂ , β̂ ) are given by

α̂ =
−n

∑
n
i=1 ln(1− e−(xi+x2

i ))

β̂ =
−m

∑
m
j=1 ln(1− e−(y j+y2

j))

Duo to the invariant property of maximum likelihood estimators, the MLE
of R is obtained by replacing α and β by their MLEs in (2) as follows

R̂ =
α̂

α̂ + β̂
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Therefore,

R̂ =
n∑

m
j=1 ln(1− e−(y j+y2

j))

n∑
m
j=1 ln(1− e−(y j+y2

j))+m∑
n
i=1 ln(1− e−(xi+x2

i ))

It is trivial to show that −α ln(1− e−(Xi+X2
i )) follows an exponential dis-

tribution with mean 1. Therefore, −2α ∑
n
i=1 ln(1− e−(Xi+X2

i )) ∼ χ2
(2n) and

−2β ∑
m
j=1 ln(1− e−(Y j+Y 2

j ))∼ χ2
(2m). So,

R̂∼ 1

1+ β

α
F

or
R

1−R
× 1− R̂

R̂
∼ F,

where the random variable F follows a F(2n,2m) distribution with 2n and 2m

degrees of freedom. So, the probability density function (pdf) of R̂ is as
follows:

fR̂(x) =
1

x2B(n,m)
(

nα

mβ
)n×

(1−x
x )n−1

(1+ nα

mβ
(1−x

x ))n+m
,

where 0 < x < 1 and α,β > 0. The 100(1− γ)% confidence interval of R

can be obtained as

[
1

1+F(1− γ

2 ;2m,2n)× ( 1
R̂
−1)

,
1

1+F( γ

2 ;2m,2n)× ( 1
R̂
−1)

]

where F( γ

2 ;2m,2n) and F(1− γ

2 ;2m,2n) are the lower and upper γ

2th percentile
points of a F distribution.

3.2 Bayes estimation of R

Let X ∼ GLFR(1,2,α) and Y ∼ GLFR(1,2,β ) be independent random
variables with cumulative distribution functions FX(x | α) and FY (y | β )
given in (1), respectively. By definition, R can be evaluated as a function
of the entire parameter θ = (α,β ), by the following relation

R = R(θ) = P(X < Y ) =
∫

FX(t | α) fY (t | β )dt
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where x = (x1, . . . ,xn) is a random sample of size n from X and y =

(y1, . . . ,ym) is a random sample of size m from Y . Let π(θ) = π(α)π(β ) be
a prior pdf on (α,β ). We consider the Gamma distributions as the prior dis-
tributions on α and β , that is, α ∼Gamma(γ1,λ1) and β ∼Gamma(γ2,λ2),
with the following density function, respectively

π(α) =
λ

γ1
1

Γ(γ1)
α

γ1−1e−λ1α , π(β ) =
λ

γ2
2

Γ(γ2)
β

γ2−1e−λ2β , α,β > 0 (4)

The posterior distribution of θ via the Bayes rule is given by π(θ | x,y) ∝

π(θ)L(θ | x,y), where L(θ | x,y) is the likelihood function for θ based on
(x,y), where its logarithm is given in (3). The posterior distributions of α

and β are independent and are given by

α|(x,y)∼ Gamma(γ1 +n,λ1−T1)

β |(x,y)∼ Gamma(γ2 +m,λ2−T2)

where T1 = ∑
n
i=1 log(1− e−(xi+x2

i )) and T2 = ∑
m
j=1 log(1− e−(y j+y2

j)).

Bayesian inference on R is based on the derivation of the posterior pdf
of R, which can be obtained using a suitable one-to-one transformation
of θ = (α,β ) of the form G : θ → (R,η), with inverse V = G−1, and
η = α + β . Then, the joint posterior pdf of (R,η) is given by π(R,η |
x, y) = π(V (R,η) | x, y)|JV (R,η)|, where |JV (R,η)| is the Jacobian of the
transformation V , so that

πR(r | x, y) =
∫

π(V (r,η) | x, y)|JV (r,η)|dη =
∫

π(r,η | x, y)|dη

Since a priori α and β are independent, using the prior distributions pre-
sented in (4), the joint posterior distribution of (R,η)

π(r,η | x, y) =Cηγ1+γ2+n+m−1 exp{−η [r(λ1−T1)− (1− r)(λ2−T2)]}rγ1+n−1(1− r)γ2+m−1

where

C =
(λ1−T1)

γ1+n(λ2−T2)
γ2+m

Γ(γ1 +n)Γ(γ2 +m)
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Then, the marginal posterior density of R is given by

fR(r | x,y) = K
rγ1+n−1(1− r)γ2+m−1

[(λ1−T1)r+(λ2−T2)(1− r)](n+m+γ1+γ2)
for 0 < r < 1

where
K =C×Γ(n+m+ γ1 + γ2)

However, there is no close form for the posterior mean or median and the
numerical method is required to derive them, but the posterior mode is the
root of d

dr fR(r | x, y)) = 0 and it is unique (see also[13] for the similar
reasoning regarding the Generalized Pareto distribution).

The Bayes estimate of R under the squared error loss function, i.e., the
posterior mean can be numerically obtained using the numerical method
presented in [9] and [1]. This estimate of R denoted by R̂B is given by

R̂B = R̃[1+
α̃R̃2(α̃(n+ γ1−1)− β̃ (m+ γ2−2))

β̃ 2(n+λ1−1)(m+λ2−1)
], (5)

where R̃ = α̃

α̃+β̃
, α̃ = n+γ1−1

λ1−T1
and β̃ = m+γ2−1

λ2−T2
.

4 Simulation Results

In this section, we present some results based on Monte Carlo simulations
to compare the performances of the different estimators described in Sec-
tions 3. We consider these two cases separately to draw inference about R.
We assume that the data are complete and the common scale parameters
a,b are also known. In this case, we consider combination of the small
sample sizes: m, n = 15, 25 and 50. Without loss of generality, we set
a = 1,b = 2. Table 1 illustrates the stress-strength parameter, R, the MLE
(R̂), the Bayes estimate (R̂B), the confidence interval based on R̂ denoted
by CIMLE , and its coverage percentage (cp), based on the simulated data
from the GLFR distributions with the different values of α and β .

The Bayes estimate of R is computed, using (5), with respect to the given
Gamma prior distributions on α and β . It would be quite conventional to
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(n,m) R R̂ R̂B CIMLE cp

(15,15) 0.416 0.421 0.412 (0.261,0.581) 0.952

0.500 0.498 0.5025 (0.282,0.721) 0.956

0.583 0.583 0.5833 (0.459,0.715) 0.923

0.666 0.662 0.6664 (0.340,0.976) 0.788

(25,25) 0.416 0.418 0.415 (0.301,0.535) 0.979

0.500 0.504 0.4976 (0.379,0.629) 0.977

0.583 0.583 0.5829 (0.443,0.723) 0.972

0.666 0.662 0.6658 (0.459,0.866) 0.931

(25,25) 0.416 0.419 0.4158 (0.271,0.567) 0.976

0.500 0.498 0.4992 (0.353,0.642) 0.983

0.583 0.583 0.583 (0.452,0.713) 0.989

0.666 0.668 0.6659 (0.526,0.809) 0.984

Table 1: Simulation results and estimation of the parameters when a,b are known from 1000 samples.

use the non-informative prior distributions for α and β . To avoid having the
improper posterior distribution, we set the hyper-parameters of the Gamma
distributions as γ1 = γ2 = λ1 = λ2 = 0.0001 (see [7]). This is trivial to show
that the bias and variance of the Bayes estimate would decrease as one
could elicit a more informative prior distributions for α and β .
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On Some Closure Properties of α-mixtures
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Abstract: The α-mixture model is a new flexible family of distributions,
that includes many existing mixture models as special cases. This paper
is an attempt to develop further properties of this family. Some reliability
interpretations of the α-mixture of survival functions for different values
of α are provided. Results on the closure property of the α-mixture of IFR,
IFRA, and NBU distributions are provided. It is shown that a necessary and
sufficient condition for an α-mixture to be IFR, IFRA, and NBU is that the
mixing distribution is IFR, IFRA, and NBU for α > 0. Also, for the 2-
component finite α-mixture, using the conditional mixing distribution, it
is shown that the α-mixture of DFR (IFR) distributions is DFR (IFR) for
α > 0 (α < 0).

Keywords: Closure property, Failure rate, Mixture models.

1 Introduction

In practice, homogeneous populations can rarely be found. In most areas,
including the lifetime, the distribution of the lifetime populations is not
homogeneous. This means that all components in the population have not
the same distribution. Populations with specific components are usually

1Shojaee, O.: O.shojaee@sci.ui.ac.ir
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heterogeneous and consist of a different number of sub-populations. For
example when components are mixed with two different product lines due
to different work shifts, different raw materials, random environment, etc
[4]. Obviously, due to the mentioned diversity in the production line, the
lifetime distribution of components of one production line is different from
another production line and when mixed, they will lead to heterogeneous
populations. Ignoring the heterogeneity can lead to fundamental errors in
reliability analysis. Mixture models are usually an effective tool for mod-
eling heterogeneity. A new flexible family of distributions, called the α-
mixture model, has been recently proposed by [1] that includes many ex-
isting mixture models as special cases.
This short communications investigates some further closure properties of
α-mixture family based on some important aging concepts reliability en-
gineering. The rest of the paper is organized as follows. In Section 2, the
definition of the α-mixture model and some related concepts as well as
some new interpretations for the α-mixture will be reviewed. Section 3,
is devoted to the study of some closure properties of α-mixtures of IFR,
IFRA, and NBU distributions. Before giving the main results of the paper,
we need the following definitions:

Definition 1.1. • A distribution F(t) is said to be increasing failure rate
(IFR) if log F̄(t) is concave.

• A distribution F(t) is said to be increasing failure rate average (IFRA)
if − log F̄(t)/t is non-decreasing.

• A distribution F(t) is said to be new better than used (NBU) if

F̄(t1 + t2)≤ F̄(t1)F̄(t2)

for all t1, t2 ≥ 0.
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2 The α-mixture model

Let T be a lifetime random variable with the α-mixture distribution. We
denote survival function (SF), probability distribution function (PDF), and
hazard rate of T by F̄(t,α), f (t,α) and r(t,α), respectively. Let Λ be a
mixing random variable taking values on [0,∞) with PDF and CDF, π(λ )

and Π(λ ), respectively. Moreover, assume that F̄(t|λ ), f (t|λ ) and r(t|λ )
refer to the SF, PDF and hazard rate of the random variable T |λ , respec-
tively. Following [1] consider the α-mixture model as below:

F̄(t,α) =

(∫
∞

0
F̄α(t|λ )π(λ )dλ

) 1
α

, α ∈ (−∞,∞). (1)

Clearly, α = 1 yields the ordinary mixture model, and α = −1 gives an
infinite extension of the harmonic means of SF F̄(t|λ ).

Properties of α-mixture

The corresponding PDF of (1) is

f (t,α) =

(∫
∞

0
f (t|λ )F̄α−1(t|λ )π(λ )dλ

)(∫
∞

0
F̄α(t|λ )π(λ )dλ

) 1
α
−1

.

(2)
Now, assume that in (1), α 6= 0. In this case, the form of the hazard rate of
the α-mixture family can be given as follows.

r(t,α) =
f (t,α)

F̄(t,α)
=

∫
∞

0 f (t|λ )F̄α−1(t|λ )π(λ )dλ∫
∞

0 F̄α(t|λ )π(λ )dλ

=
∫

∞

0
r(t|λ )πα(λ |t)dλ , (3)

where
πα(λ |t) =

F̄α(t|λ )π(λ )∫
∞

0 F̄α(t|λ )π(λ )dλ
. (4)

The authors in [6] have stated that πα(λ |t) can be considered as the con-
ditional PDF of Λ|Tα ≥ t, where Tα has the SF F̄α(t|λ ) for α > 0. For
α ≤ 0, for each t > 0, the weighted density corresponding to π(λ ) with
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the weight function F̄α(t|λ ) is πα(λ |t).
The case that α → 0 is denoted by F̄gm(t) which is an extension of the
geometric mean. In this case, we obtain

F̄gm(t) = lim
α→0

F̄(t,α) = exp
(∫

∞

0
log F̄(t|λ )π(λ )dλ

)
,

which implies that the hazard rate of F̄gm(t) is

rgm(t) =
∫

∞

0
r(t|λ )π(λ )dλ , (5)

where r(t|λ ) is the hazard rate corresponding to F̄(t|λ ). This, in turn, im-
plies that the time behavior of the hazard rate of F̄gm(t) depends on the time
behavior the hazard rate of F̄(t|λ ). For example, if F̄(t|λ ) is IFR (DFR)
so is the hazard rate of F̄gm(t).

Finite α-Mixture

The finite α-mixture of SF’s F̄i for i = 1,2, ..,n, can be expressed as

F̄(t,α) =

[
n

∑
i=1

piF̄α
i (t)

]1/α

, (6)

having PDF as below:

f (t,α) =

[
n

∑
i=1

pi fi(t)F̄α−1
i (t)

][
n

∑
i=1

piF̄α
i (t)

] 1
α
−1

, (7)

where pi is the mixing proportion such that ∑
n
i=1 pi = 1 and pi ≥ 0, for

i ∈ {1,2, ...,n}(see, [1]).

If r(t,α) and ri(t) refer to the hazard rate of the finite α-mixture and hazard
rate of the i-th component, respectively, then

r(t,α) =
f (t,α)

F̄(t,α)
=

n

∑
i=1

ri(t)pi(t), (8)

where pi(t) =
piF̄α

i (t)
∑

n
i=1 piF̄α

i (t) . In particular, for the finite α-mixture (6), the SF
and the hazard rate of the geometric mixture, denoted by F̄gm(t) and rgm(t),
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respectively, can be written as:

F̄gm(t) =
n

∏
i=1

F̄ pi
i (t),

and

rgm(t) =
n

∑
i=1

piri(t).

In the following, we provide some reliability interpretations of the α-
mixture family for different values of α .

(i) The case α → 0, with SF F̄gm(t) = ∏
n
i=1 F̄ pi

i (t), can be considered
as a generalized proportional hazards (GPH) model. Also, one can
see that F̄gm(t) is the reliability function of a series system that con-
sists of n independent components, where the reliability function of
the i-th component follows from the PH model with the PH parame-
ter pi and the baseline SF F̄i(t), i = 1, . . . ,n. Note that, when pi =

1
n ,

we get F̄n
gm(t) = ∏

n
i=1 F̄i(t), which is the reliability function of an n-

components series system, where the i-th component has reliability
F̄i(t).

(ii) The case α = −1. Assume that we have a mixed population of two
components with SF’s F̄1(t) and F̄2(t) and proportions p and 1− p,
respectively. Then the SF of a randomly selected from the population
component is

F̄m(t) = pF̄1(t)+(1− p)F̄2(t).

The randomly selected component is repeatedly tested to its lifetime
exceed the specified time t for the first time. In this case, the average
number of the components required to achieve the first success is

Nm =
1

F̄m(t)
=

1
pF̄1(t)+(1− p)F̄2(t)

. (9)

The average number of the components with SF F̄1(t) required to
achieve the first success is N1 = 1

F̄1(t)
. Similarly, the average number
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of the components with SF F̄2(t) required to achieve the first success
is N2 =

1
F̄2(t)

. Now, if we calculate the arithmetic means of N1 and N2

with weights p and 1− p, respectively, we have

Nh = pN1 +(1− p)N2 =
p

F̄1(t)
+

1− p
F̄2(t)

. (10)

Consider the α-mixture model (6) with SF’s F̄i, i = 1,2.

F̄(t,α) =

[
pF̄α

1 (t)+(1− p)F̄α
2 (t)

] 1
α

(11)

The right-hand side of (10) is 1
F̄(t,−1) , which means Nh =

1
F̄(t,−1) . On

other hand, the right-hand side of (9) is 1
F̄(t,1) , which means Nm = 1

F̄(t,1) .
As we see, the α-mixture model covers these two averages, and by the
monotony property of α-mixtures, we have Nm ≤ Nh.

(iii) The case α > 0. Consider the following two different policies for con-
struct an m-component series system [1].

A. In the first policy, to construct an m-component series system of
the same type, a component is randomly selected from a set of n

components and then drawn m item from it. If the probability of
selecting the i-th component be pi, i = 1,2, . . . ,n, then the reliability
function of constructed m-component series system will be equal to

F̄1(t) =
n

∑
i=1

piF̄m
i (t) = F̄m(t,m),

where F̄i(t), i= 1, . . . ,n, is the SF of the i-th component and F̄(t,m),
is the SF of the finite α-mixture with α = m.

B. In the second policy, first, we mixed n components and then drawn
all of m components randomly from the mixed population. If the
proportion and the SF of the i-component in the mixed population
be pi and F̄i(t), i= 1, . . . ,n, respectively, then the reliability function
of constructed m-component series system will be equal to

F̄2(t) =

(
n

∑
i=1

piF̄i(t)

)m

= F̄m(t,1),
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where F̄(t,1), is the SF of the finite α-mixture with α = 1.

The author in [1], by monotone decreasing property of α-mixtures,
have shown that F̄2 ≤st F̄1, that means mixtures of a series system
with heterogeneous components are less reliable than a series system
with homogeneous components. Thus, for building a series system
from different types of components, the ‘mixing at the system level’
is better than the ‘mixing at the component level’.
Another interpretation of the α-mixture, which can be found in [6], is
as follows.
Assume that we have a mixed population with n sub-populations,
where the SF’s of the sub-populations in laboratory condition is F̄i(t),
i = 1, . . . ,n. Suppose that the proportions of the n sub-populations are
pi, i = 1, . . . ,n. Assume that the severe condition acts on each sub-
population uniformly so that the SF of i-th sub-population will change
to F̄α

i (t), where α > 0. Then, the SF of a randomly selected individual
is

F̄s(t,α) =
n

∑
i=1

piF̄α
i (t).

Assume that the component is shielded from the severe condition to
arrive at the laboratory condition. Hence, the reliability of the selected
component in the laboratory condition is

F̄(t,α) =

( n

∑
i=1

piF̄α
i (t)

) 1
α

,

which is the SF of the α-mixture model.

We give the following results for the finite α-mixture using the condi-
tional PDF that coincides with the results given in [1]. Let us consider an
α-mixture of two SF’s F̄1(t) and F̄2(t) with hazard rates r1(t) and r2(t),
respectively. The α-mixture hazard rate in this case is

r(t,α) = r1(t)
pF̄α

1 (t)
pF̄α

1 (t)+(1− p)F̄α
2 (t)

+ r2(t)
(1− p)F̄α

2 (t)
pF̄α

1 (t)+(1− p)F̄α
2 (t)
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= r1(t)pα(t)+ r2(t)(1− pα(t)), (12)

where the time-dependent probabilities are

pα(t) =
pF̄α

1 (t)
pF̄α

1 (t)+(1− p)F̄α
2 (t)

, (1− pα(t)) =
(1− p)F̄α

2 (t)
pF̄α

1 (t)+(1− p)F̄α
2 (t)

.

From this representation we have:

min{r1(t),r2(t)} ≤ r(t,α)≤max{r1(t),r2(t)}.

In particular, if F̄1 ≥hr F̄2, then

r1(t) ≤ r(t,α)≤ r2(t).

Also, we can study directly the closure property of the finite α-mixture of
two components by differentiating (12) with respect to t as follows:

r′(t,α) = r′1(t)pα(t)+ p′α(t)r1(t)+ r′2(t)(1− pα(t))− p′α(t)r2(t)

= r′1(t)pα(t)+ r′2(t)(1− pα(t))+ p′α(t)(r1(t)− r2(t))

= r′1(t)pα(t)+ r′2(t)(1− pα(t))−α pα(t)(1− pα(t))(r1(t)− r2(t))2.

Therefore, as r′i(t)≤ 0, i = 1,2, r′(t,α)≤ 0 for α ≥ 0. This means if both
distributions are DFR, then the finite α-mixture is also DFR for α ≥ 0.
Similarly, as r′i(t) ≥ 0, i = 1,2, r′(t,α) ≥ 0 for α ≤ 0. This means if both
distributions are IFR, then the finite α-mixture is also IFR for α ≤ 0.

3 Closure properties of α-mixtures

Recently, [1] have extended the famous result on the closure property of
the mixture of DFR distributions. It is well-known that the α-mixtures of
IFR (IFRA) distributions are IFR (IFRA) for α < 0. But what happens
when α > 0? To answer this question, first, we extend the result in [5] for
α-mixture of IFR distributions. Next, we obtain similar closure theorems
for IFRA distributions. We extend the result which is presented in [2]. The
following lemma and theorems, given in [5], are helpful tools to study the
closure properties in the subsequent section.
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Theorem 3.1. (i) If f and g are log concave, so are f .g,c f and f a for all

a > 0,c≥ 0.

(ii) If f is log concave and non-decreasing and ψ is concave (and nonneg-

ative), then the composition f oψ is log concave.

Theorem 3.2. Let F be log concave on Rm×Rn. Then G(x) =
∫

F(x,y)dy

is log concave on Rm. (Here dy is Lebesgue measure on Rn)

Theorem 3.3. The following conditions are equivalent:

(i) Λ is IFR(DFR)

(ii) Π̄ is a Po1ya frequency function of order 2 (PF2)(RR2)

(iii) Π̄ is log concave(log convex).

Lemma 3.4. If Λ is IFR, then there exists a continuous non-negative non-

decreasing concave function ψ on [0,∞) such that ψ(S) has the same dis-

tribution as Λ, where S is distributed as a standard exponential.

3.1 Closure property under the notion of IFR

The next theorem explores the IFR closure property of α-mixture.

Theorem 3.5. If Λ be IFR and F̄(t|λ ) be log concave in (t,λ ) and in-

creasing in λ for each fixed t ≥ 0, then, F̄(t,α) is log concave in t (IFR)

for α > 0. Conversely, if F̄(t,α) be log concave in t for α > 0 whenever

F̄(t|λ ) satisfies the above condition, then Λ is IFR.

Proof. Let Λ be IFR and F̄(t|λ ) be log concave in (t,λ ) and increasing in
λ for each fixed t ≥ 0. Then, from Lemma 3.4, we have∫

∞

0
F̄α(t|λ )π(λ )dλ =

∫
∞

0
F̄α(t|ψ(s))e−sds. (13)

Since F̄(t|λ ) is log concave in (t,λ ), from Theorem 3.1 (i), F̄α(t|λ ) is
log concave for α > 0. On the other hand, F̄(t|λ ) is increasing in λ , from
Theorem 3.1 (ii), F̄α(t|ψ(s)) is log concave. Hence from Theorem 3.2, re-
lation (13) is log concave in t. Again from Theorem 3.1 (i), since α > 0,
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F̄(t,α) is log concave in t.
The converse part follows by taking F̄(t|λ ) = I(t < λ ). Thus, I(t < λ )

is log concave in (t,λ ) and non-decreasing in λ for each fixed t. From
Theorem 3.1 (i) Iα(t < λ ) is log concave for α > 0. Hence, by assump-
tion, F̄(t,α) is log concave in t, again from Theorem 3.1 (i), F̄α(t,α) =∫

π(λ )dλ is log concave. Thus, according to Theorem 3.3, Λ is IFR. This
completes the proof.

3.2 Closure property under the notion IFRA

The following lemma, given in [3], is a useful tool for the next theorem.

Lemma 3.6. Λ is IFRA iff∫
h(θ)dΠ(λ )≤

{∫
hβ (λ/β )dΠ(λ )

}1/β

for all 0≤ β ≤ 1 and all nonnegative increasing functions h.

Now, we can give the following theorem on the IFRA closure property for
α-mixture.

Theorem 3.7. Suppose that the mixing distribution Π(λ ) be an IFRA dis-

tribution. Also, let F̄(t|λ ) is increasing in λ for each t ≥ 0 and satisfies

F̄(β t|βλ )≥ F̄β (t|λ ) (14)

for all 0 < β < 1 and for all t ≥ 0 and λ ≥ 0. Then, F̄(t,α) is IFRA for

α > 0. Conversely, if F̄(t,α) is IFRA whenever F̄(t|λ ) satisfies the above

two conditions, then Λ is IFRA.

Proof. The “if” part of the proof follows because from (1) we have

F̄(β t,α) =

(∫
∞

0
F̄α(β t|λ )π(λ )dλ

) 1
α

.
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Then, by assumption

F̄(β t,α)≥
(∫

∞

0
F̄αβ (t|λ/β )π(λ )dλ

) 1
α

≥

([∫
∞

0
F̄α(t|λ )π(λ )dλ

]β
) 1

α

=

([∫
∞

0
F̄α(t|λ )π(λ )dλ

] 1
α

)β

= F̄β (t,α),

where the last inequality follows from Lemma 3.6. The “only if” part fol-
lows by taking F̄(t|θ) = I(t < θ). This completes the proof.

3.3 Closure property under the notion of NBU

To proof an NBU closure result, we need the following lemma from [2].

Lemma 3.8. Λ is NBU iff∫
g(βλ ) h[(1−β )λ ] dΠ(λ )≤

∫
g(λ ) dΠ(λ )

∫
h(λ ) dΠ(λ )

for all nonnegative, increasing functions g and h and all 0 < β < 1.

Theorem 3.9. Suppose that the mixing distribution Π(λ ) is an NBU dis-

tribution. Also, let F̄(t|λ ) be increasing in λ for each t ≥ 0 and satisfies

F̄(t|λ )≤ F̄(β t|βλ )F̄((1−β )t|(1−β )λ )

for all 0 < β < 1 and for all λ ≥ 0 and t ≥ 0. Then, F̄(t,α) is NBU for

α > 0. Conversely, if F̄(t,α) is NBU whenever F̄(t|λ ) satisfies the above

two conditions, then Λ is NBU.

Proof. The direct part of the proof follows because from (1) for 0 < β < 1,
we have

F̄(t,α) =

(∫
∞

0
F̄α(t|λ )π(λ )dλ

) 1
α
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≤
(∫

∞

0
F̄α(β t|βλ )F̄α((1−β )t|(1−β )λ )π(λ )dλ

) 1
α

≤
((∫ ∞

0
F̄α(β t|λ )π(λ )dλ

)(∫ ∞

0
F̄α((1−β )t|λ )π(λ )dλ

)) 1
α

= F̄(β t,α) F̄((1−β )t,α),

where the first and second inequality follows from assumption and Lemma
3.8, respectively. The converse part follows by taking F̄(t|θ) = I(t < θ).
This completes the proof.
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Effect of Aging and Environmental Shocks on Reliability of Coherent
Systems Consisting of Heterogeneous Components
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Abstract: In reliability engineering, a system and its components, in addi-
tion to internal failures, are often subject to external lethal shocks. Usually,
the random shocks are produced by a random environment and modeled by
a stochastic process. In this talk, using the theory of survival signature, a
general approach in assessing the reliability of systems with heterogeneous
components is presented. We also propose a preventive maintenance model
for a multicomponent system whose components are subject to both inter-
nal failures and fatal shocks. The criteria that will be optimized are the cost
functions formulated based on the repair costs of the components and the
whole system.

Keywords: Aging, Lethal shock, Preventive maintenance, Survival signa-
ture.

1 Introduction

In real life situation, a system and its components may fail due to various
factors. The failure may occur according to aging over time and/or exter-
nal shock processes. For example, civil infrastructures, such as highway
bridges, may fail because of material fatigue or wear, or may be subjected

1Hashemi, M.: m.hashemi@sci.ui.ac.ir
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to earthquakes or hurricanes. When assessing the reliability of such sys-
tems, neglecting the effects of external shocks tends to produce large pre-
diction errors and even false reasoning. As a result, it is of great importance
to establish a model for system reliability analysis, which considers both
internal failures and external shocks.

In assessing the reliability of systems, a problem of interest, for academic
researchers and system designers, is to maintain the system in optimum
working conditions. Since almost all types of systems are exposed to fail-
ure, the appropriate maintenance of such systems or their components is
vital to keep the system in proper working conditions and also to avoid
high costs of sudden failure of the system. Generally, two types of mainte-
nance operations may be received by a system that deteriorates with age:
corrective maintenance (CM) and preventive maintenance (PM). The CM
is performed on a failed system to restore it to operating condition, while
the PM is a planned maintenance that is applied on the system before its
failure to bring it back to a better working condition.

In recent years, the problem of determining optimal maintenance poli-
cies has been extensively studied in the literature. Age-based PM policy is
among the first maintenance models in which the system is replaced at age
TPM or at system failure, whichever occurs first (see, [2]). [19] presented
a review of age replacement models with new perspectives. An age-based
PM policy for a binary coherent system consisting of independent expo-
nential components are presented in [8]. There is also an increasing inter-
est in maintaining a system whose components are completely reliable, but
are exposed to some shocks from various sources. Based on the notion of
signature, ([9],[10]) studied some PM models for a systems whose com-
ponents are subject to shocks. [4] considered preventive maintenance of
systems operating in a random environment modeled by a Poisson process
of shocks. Recent developments on maintenance strategies can be found,
for example, in [20] and [11] and [13].



Tavangar, M. and Hashemi, M. 343

The concepts of signature and survival signature of the system are two ben-
eficial tools for assessing the reliability of a coherent system. The notion of
signature was originally defined by [15]. The signature can be effectively
utilized to compute the system reliability and to compare coherent systems
with different structures. Recent development of the signature-based relia-
bility analysis can be found, for example, in [16], [14] and [17]. [5] later
introduced the concept of survival signature for systems with components
of multiple types. For references on the reliability properties of systems
with multiple types of components based on the concept of survival signa-
ture, we refer the reader to [6], [1] and [7].

In the present paper, we consider a coherent system with independent but
possibly non-identical components. Along with internal failures, the com-
ponents are assumed to be subject to external shocks as well. This setting
provides a more realistic approach to system reliability analysis. Under
the given failure scenario, we study the survival signature-based reliabil-
ity representation of the system lifetime. This representation enables us to
propose some cost-based optimal maintenance models such that at the time
of system failure or at the PM time, the maintenance actions are performed
not only on the entire system but also on each component depending on its
status.

The reminder of the paper is arranged as follows. In Section 2, we provide
some formulas for evaluating the reliability of a system whose components
are exposed to both aging and shocks. Section 3 presents a maintenance
policy based on the reliability models developed in Section 2. Extensive
graphical and numerical examples to theoretical results appeared in the
paper are also presented.
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2 The system reliability under shocks and aging

In this section, the reliability of a coherent system (c.f. [3]) consisting of
n heterogeneous components is evaluated. Consider an n-component co-
herent system with L ≥ 2 types of components consisting n j components
of type j, j = 1,2, ...,L, such that ∑

L
j=1 n j = n. Assume that the lifetimes

of all components are independent random variables and the components
of type j are identical with a common cumulative distribution function
Fj, j = 1,2, ...,L. The survival signature for such a system, denoted by
Φ(i1, i2, ..., iL), is defined as the probability that the system functions given
that precisely i j components of type j function, j = 1,2, ...,L. The survival
signature can then be written as (see [5])

Φ(i1, i2, ..., iL) =

(
L

∏
j=1

(
n j

i j

)−1
)

∑
x∈S

φ(x),

where φ(x) is the structure function of the system.

Now, we present a more general setting in which internal failures and ex-
ternal shocks are two causes of components failures. It is assumed that the
components of type j, j = 1,2, ...,L, are exposed to a specific sequence of
lethal shocks. Further, we suppose that the shock processes are indepen-
dent of the internal failures. Let P( j)

i j
(t) denotes the probability of arriving

i j shocks to components of type j in [0, t) and P̄( j)
n j (t) = ∑

∞
v j=n j

P( j)
v j (t). Be-

fore proceeding to find the system reliability under the described setting,
we present a result which is useful for our derivations. The proof may be
found in Tavangar and Hashemi (2021).

Proposition 2.1. For a coherent system consisting of L types of compo-

nents (described at the beginning of this section) that are subject to both

shocks and aging, the probability that i j, i j ∈ {0,1, ...,n j}, components of

type j, j = 1,2, ...,L, has been failed up to time t > 0 is given as

P
(

N(1)(t) = i1, ...,N(L)(t) = iL
)
= ∏

j∈E

{
n j

∑
k j=0

P̄( j)
n j−k j

(t)
(

n j

k j

)
F

k j
j (t)F̄

n j−k j
j (t)

}
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× ∏
j∈Ec

{
i j

∑
k j=0

P( j)
i j−k j

(t)
(

n j

k j

)
F

k j
j (t)F̄

n j−k j
j (t)

}
,

(1)

where N( j)(t) denotes the total number of failed components of type j in

[0, t) and E = { j : i j = n j} ⊆ {1,2, ...,L}.

Using Proposition 2.1, the reliability function of the system subject to both
internal failures and external shocks can be expressed as

H̄(t) =
n1

∑
i1=0
· · ·

nL

∑
iL=0

Ψ(i1, ..., iL)P
(

N(1)(t) = i1, ...,N(L)(t) = iL
)
, t ≥ 0,

(2)

where Ψ(i1, i2, ..., iL)=Φ(n1− i1,n2− i2, ...,nL− iL) and P(N(1)(t)= i1, ...,

N(L)(t) = iL) is given in (1).

The application of the above proposed method is presented in the following
example.

Example 2.2. Consider the automotive braking system (ABS) consisting
of four component types M, H, C and P which is depicted in Figure 1. The
system has a master brake cylinder (M), four wheel brake cylinders (C1–
C4), four braking pads (P1–P4) and a hand brake mechanism (H). Such a
system is analyzed in [18] who proposed a condition-based maintenance
strategy by means of the survival signature. The values of Ψ(i1, i2, i3, i4)

for the ABS is given in Tavangar and Hashemi (2021).

Figure 1: Automotive braking system.
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We consider different lifetime distributions and shock processes for each
particular type of components. Table 1 summarizes these information for
each type. We assume that the components of types M, H, C and P are
subject to non-homogeneous Poisson shock processes with different inten-
sity λ (t). Also, the lifetimes of components are assumed to have Weibull
distributions W (α,β ) with the reliability function

F̄(t) = e−(
t
β
)α

, t ≥ 0 α > 1, β > 0.

Table 1: Information on failure mechanism of components.

No. Components Distribution λ (t)

1 M W (2,1) 0.2 ta

2 H W (2,1.5) 0.6 ta

3 C1,C2,C3,C4 W (2,1.2) ta

4 P1,P2,P3,P4 W (2,1.8) 1.2 ta

Now with having Ψ(i1, i2, ..., iL) and Equation (2), the reliability of the sys-
tem subject to internal deterioration, lethal shocks, or both internal failures
and external shocks can be calculated. The results are shown in Figure 2(a)
as the doted line, dashed line and solid line, respectively. It can be observed
that the reliability of the system under both aging and shocks is always
lesser than that with only one cause of failure. Also, it is seen that the re-
liability of the system impinged only by shocks is greater than that solely
subject to aging before time t = 2.1, but later, the situation is reversed.

Figure 2(b) shows the graphs of the hazard rates of the system subject
to aging ra(t), shocks rs(t) and both aging and shocks r(t). Again, it is
observed that the hazard rate r(t) is always higher than ra(t) and rs(t),
and that ra(t) is greeter than rs(t) up to time t = 2.1, but afterwards, the
situation is reversed.
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Figure 2: (a) The reliability function of the system. (b) The hazard rate of the system.

3 Preventive maintenance model based on cost criterion

In this section, a PM model is proposed for multi-component coherent sys-
tems whose components are exposed to environmental shocks and aging. It
is worth noting that the cost function in the proposed model are presented
using the notion of survival signature. In fact this concept enables us to
introduce some maintenance models in which repair/replacement actions
are performed not only on the entire system but also on each component
depending on its status.

Consider an original n-component coherent system consisting of L, 2 ≤
L≤ n, types of components where there exists n` components of type `, `=
1,2, . . . ,L, and ∑

L
`=1 n` = n. Assume that this system whose components

are subject to external lethal shocks in addition to internal deterioration,
starts to function at time t = 0. Also, we assume that the components of
type `, ` = 1,2, ...,L, are exposed to a specific sequence {N(`)

s (t), t ≥ 0}
of lethal shocks. In this section, we propose a maintenance model for such
a system with a decision variable TPM on the time interval (0,∞). There
are two possibilities: The system has failed before time TPM or the system
is still operating at that time. If the system fails in the interval (0,TPM),
the operator decides to perform a CM on the whole system with cost cr.
However, if the system is working at TPM, the failed components of type
`, `= 1,2, ...,n, are replaced by new and identical ones at a cost c(`)0 and a
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PM action is performed on the whole system at a cost ct . Notice that in the
later case, some components may have already failed during the operation
in the time interval (0,TPM) and thus have been unemployed.

In order to assess the cost rate for the described maintenance strategy, we
first compute the expected cost during a maintenance cycle. If the system
is alive at the planned time TPM, then the expected maintenance cost will
be

H̄(TPM)

{
ct +

L

∑
`=1

c(`)0 E[N(`)(TPM) | T > TPM]

}
,

where the conditional expectation can be obtained as

E[N(`)(TPM) | TPM < T ] =
1

H̄(TPM)

n1

∑
i1=1
· · ·

nL

∑
iL=1

i`Ψ(i1, ..., iL)

×∏
j∈E

{
n j

∑
k j=0

P̄( j)
n j−k j

(TPM)

(
n j

k j

)
F

k j
j (TPM)F̄

n j−k j
j (TPM)

}

× ∏
j∈Ec

{
i j

∑
k j=0

P( j)
i j−k j

(TPM)

(
n j

k j

)
F

k j
j (TPM)F̄

n j−k j
j (TPM)

}
and H̄(TPM) is defined in (2). On the other hand, if the system fails before
the age of the system reaches scheduled time TPM, then the expected cost
is crH(TPM).

Summing up, the expected cost during one maintenance cycle can be ob-
tained as

C (TPM) = ct +(cr− ct)H(TPM)

+
L

∑
`=1

c(`)0

n1

∑
i1=1
· · ·

nL

∑
iL=1

i`Ψ(i1, ..., iL)

×∏
j∈E

{
n j

∑
k j=0

P̄( j)
n j−k j

(TPM)

(
n j

k j

)
F

k j
j (TPM)F̄

n j−k j
j (TPM)

}

× ∏
j∈Ec

{
i j

∑
k j=0

P( j)
i j−k j

(TPM)

(
n j

k j

)
F

k j
j (TPM)F̄

n j−k j
j (TPM)

}
.
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Therefore, the expected cost rate can be expressed as

η(TPM) =
C (TPM)

E[min(T,TPM)]
,

where

E[min(T,TPM)]

=
n1

∑
i1=0
· · ·

nL

∑
iL=0

Ψ(i1, ..., iL)
∫ TPM

0
P
(

N(1)(t) = i1, ...,N(L)(t) = iL
)

dt,

and P
(

N(1)(t) = i1, ...,N(L)(t) = iL
)

is given in Proposition 2.1. The aim
is to find the amount of T ∗PM which minimizes the cost function η(TPM).

To illustrate the application of the PM model and the methodology devel-
oped above, in the following a numerical example is conducted.

Example 3.1. The reliability of the ABS is evaluated in Example 2.2. Re-
call that it contains 10 components of four types M, H, C and P. The
lifetime distributions and shock processes for each type of components are
summarized in Table 1. In this example, we apply a TPM-policy on the
ABS. Table 2 that contains the optimum PM time T ∗PM and the optimum
cost η(T ∗PM), shows the impact of different cost parameters ct and cr on
the optimal time T ∗PM. As it is observed, when ct increases, then both T ∗PM

and the optimum cost η(T ∗PM) increases. Note that an increase in ct leads
to the decision to perform preventive repair later. Also, note that when cr

increases, then, as expected, the PM time declines and hence an earlier PM
action will be carried out.

Table 2: The optimal PM time T ∗PM and η(T ∗PM) for different values of cr and ct with c0 = (10,20,15,12).

ct

70 100 130

cr T ∗PM η(T ∗PM) T ∗PM η(T ∗PM) T ∗PM η(T ∗PM)

250 0.837 163.246 1.006 190.235 1.289 207.738

300 0.773 172.384 0.899 203.785 1.035 228.479

350 0.728 180.200 0.836 214.682 0.939 243.103
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The cost functions are plotted in Figure 3(a) for different values of ct and
fixed values of cr = 250 and c0 = (10,20,15,12). Also, the cost functions
are plotted in Figure 3(b) for different values of cr and the fixed value
ct = 130.

Figure 3: (a) The cost function of the ABS for different ct . (b) The cost function of the ABS for different cr.
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1Faculty of Basic Sciences and Engineering, Department of Mathematics
and Statistics, Gonbad Kavous University, Gonbad Kavous, Iran

Abstract: The concept of mean residual lifetime and mean inactivity time
play crucial roles in reliability, risk theory and life testing. In this regard,
we introduce weighted mean residual lifetime and mean inactivity time
functions by considering a non-negative weight function. Based on this
function, we provide expressions for the variance of transformed random
variable in terms of the square of weighted mean residual lifetime and
mean inactivity time functions.

Keywords: Mean inactivity time function, Mean residual lifetime func-
tion, Variance.

1 Introduction

Let X be a non-negative absolutely continuous random variable denoting
the lifetime of a system or a component or a living organism with cumula-
tive distribution function (CDF) F(x) = P(X ≤ x) and probability density
function (PDF) f (x). If X denotes the lifetime a system or a component
under the condition that the system has survived up to age t, then the resid-
ual lifetime is defined by Xt = [X− t |X > t], where as usual [X |B] denotes
a random variable having the same distribution of X conditioned on B. The
mean residual life (MRL) function of X is defined as

1Toomaj, A.: ab.toomaj@gonbad.ac.ir
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m(t) = E[X− t|X > t] =
1

F(t)

∫
∞

t
F(x)dx, (1)

for all t ≥ 0 such that F(t)> 0. Analogously, under the condition that the
system has been found failed before time t, the inactivity time is defined by
X[t] = [t−X |X ≤ t]. In fact, X[t] denotes a random variable whose distribu-
tion is the same as the conditional distribution of t−X given that X ≤ t. It
is worth emphasizing that in many realistic situations, the random lifetime
can refer to the past. For instance, consider a system whose state is ob-
served only at certain preassigned inspection times. If at time t, the system
is inspected for the first time and it is found to be “down”, then the failure
relies on the past (see e.g. Kayid and Ahmad [12] and Di Crescenzo and
Longobardi [5]). Now, we recall the MIT function of X which is defined
by

µ̃(t) = E[t−X |X ≤ t] =
1

F(t)

∫ t

0
F(x)dx, t ∈ D, (2)

where D := {t > 0 : F(t)> 0} and where E[ · ] means expectation. Assum-
ing that µ̃(t) is a differentiable function, from (2) we get

µ̃
′(t) = 1− τ(t)µ̃(t), t ∈ D, (3)

where

τ(x) =
f (x)
F(x)

, x ∈ D, (4)

denotes the reversed hazard rate function of X .

The mean residual life function has been employed in life lengths studies
by various authors, see e.g. Hall and Wellner [7], Bhattacharjee [4] and
Hollander and Proschan [8] and the references therein. Kayid and Ahmad
[12] (see also Ahmad et al. [1]) studied stochastic comparisons based on
the MIT function under the reliability operations of convolution and mix-
ture. Badia and Berrade [3] gave an insight into properties of the MIT
in mixtures of distributions. Some further properties of MIT function are
widely studied and investigated in Finkelstein [10] and Kundu et al. [13]
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and the references therein. Moreover, Izadkhah and Kayid [11] used the
harmonic mean average of the MIT function to propose a new stochastic
order. Recently, Toomaj and Di Crescenzo [14] showed that the variance
of a random variable can be represented in terms of the square of the MRL
and MIT functions. Therefore, it is not surprising that the MIT function has
been the object of several investigations. The aim of the present paper is
to define a new version of MRL and MIT functions, namely the weighted
MRL and MIT functions and to show some applications of such measures.

2 Main results

The aim of this section is to investigate on the weighted mean inactivity
time function by applying the cumulative weight function, say. For this
aim, we consider a non-negative and differentiable function φ(x) in [0,∞).

The cumulative weight function is defined as

ψ(x) :=
∫ x

0
φ(u)du, x≥ 0. (5)

This function plays a pivotal role in achieving our results. Specifically,
given the random lifetime X , we analyze various properties of the trans-
formed random variable ψ(X), where the latter may be viewed as an in-
creasing time-change of X . Let F(t) = 1−F(t) be the survival function of
X , and let

λ (x) =
f (x)
F(x)

, ∀ x≥ 0 : F(x)> 0 (6)

denote the hazard rate function of X . For example, if we consider φ(x) =

λ (x), then (5) gives the cumulative hazard function of X . Due to (5), it is
clear that ψ(x) is an increasing function of x > 0 such that ψ(0) = 0, since
ψ ′(x) = φ(x) ≥ 0. Additionally, if the weight function φ(x) is increasing
(decreasing) in x > 0, then ψ(x) is convex (concave). Now, we introduce
the weighted mean residual life (WMRL) function given by

mψ(t) = mψ(X)(t) = E[ψ(X)−ψ(t)|X > t] =
1

F(t)

∫
∞

t
φ(x)F(x)dx, (7)
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for all t ≥ 0 such that F(t) > 0. In particular, when ψ(t) = t, and hence
φ(t) = 1, then Eq. (7) coincides with the MRL function (1). Hereafter, we
focus on the two nonparametric classes of lifetime distributions based on
increasing and decreasing nature of weighted mean residual life function
mψ(t).

Definition 2.1. A non-negative random variable X is said to have increas-
ing (decreasing) weighted mean residual life function, denoted by IWMRL
(DWMRL), if mψ(t) is an increasing (decreasing) function of t ≥ 0.

Hereafter, we provide different conditions such that mψ(x) is monotonic.
To this aim, we recall that X is said to be increasing (decreasing) in mean
residual life, i.e. IMRL (DMRL), if the MRL function m(x) is increasing
(decreasing) in x.

Theorem 2.2. Let X be an absolutely continuous non-negative random

variable. If φ(x) is increasing (decreasing) in x, and if X is IMRL (DMRL),

then X is IWMRL (DWMRL).

Now, let us consider the following example.

Example 2.3. Let us consider φ(t) = Λ(t) = − logF(t), and thus ψ(t) =∫ t
0 Λ(τ)dτ . In this case, from (7) we have

mψ(t) =−
1

F(t)

∫
∞

t
F(x) logF(x)dx, t > 0.

Hence, making use of Eq. (14) of Asadi and Zohrevand [2], we have

mψ(t) = E (X ; t)−m(t) logF(t), t > 0, (8)

where

E (X ; t) =−
∫

∞

t

F(x)
F(t)

log
F(x)
F(t)

dx, t > 0,

is the dynamic cumulative residual entropy (DCRE) of X . Recalling Corol-
lary 4.4 of Asadi and Zohrevand [2], we have that if X is IMRL, then
E (X ; t) is increasing in t, and thus from (8) we obtain that in this case X is
IWMRL. This conclusion can also be obtained from Theorem 2.2.
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Hereafter, in the main result of this section, we express the variance of
ψ(X) in terms of the WMRL function (7) (see Toomaj and Di Crescenzo
[15] ).

Theorem 2.4. Let X be an absolutely continuous non-negative random

variable. If the weighted mean residual life function (7) has finite second

moment, i.e. E[m2
ψ(X)]< ∞, then

σ
2[ψ(X)] = E[m2

ψ(X)]. (9)

In the following theorem, by making use of the above results we first inves-
tigate the impact of the transformation ψ(x) on the variance of a random
variable.

Theorem 2.5. Under the condition of Theorem 2.4, if the function φ(·) is

increasing (decreasing), such that φ(x)≥ 1 (0≤ φ(x)≤ 1) for all x in the

support of X , then

σ
2[ψ(X)]≥ (≤)σ

2(X).

As an application of (9), let us consider the following example.

Example 2.6. Let X1:m = min{X1, . . . ,Xm} denote the minimum of in-
dependent and identically distributed absolutely continuous non-negative
random variables X1, . . . ,Xm coming from CDF F(x). Denote by F1:m(x) =

P(X1:m > x) = [F(x)]m, x≥ 0, the survival function of X1:m. Hence, by set-
ting ψ(t) = F(t), and thus φ(t) = f (t), from (7) we obtain, for t > 0,

mψ(X1:m)(t)=
1

F1:m(t)

∫
∞

t
f (x)F1:m(x)dx=

1
[F(t)]m

∫
∞

t
f (x)[F(x)]m dx=

F(t)
m+1

.

By making use of Theorem 2.4, thus the variance of the probability integral
transformation F(X1:m) can be obtained as

σ
2[F(X1:m)] = m

∫
∞

0
f (x)[F(x)]m−1

[
F(x)
m+1

]2

dx =
m

(m+1)2(m+2)
.
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In analogy with (7), we introduce the weighted mean inactivity time

(WMIT) function as

µ̃ψ(t) = µ̃ψ(X)(t) = E[ψ(t)−ψ(X)|X ≤ t] =
1

F(t)

∫ t

0
φ(x)F(x)dx, t ∈ D.(10)

In particular, when ψ(t) = t, and hence φ(t) = 1, then Eq. (10) coincides
with the MIT function (2). In what follows, we implicitly assume that

E[ψ(X)] =
∫

∞

0
ψ(x) f (x)dx < ∞, (11)

to ensure the finiteness of µ̃ψ(t). Henceforward, we investigate some prop-
erties of the WMIT function given in (10). Now, consider the following
definition.

Definition 2.7. A non-negative random variable X is said to have increas-
ing weighted mean inactivity time function, denoted by IWMIT, if µ̃ψ(t)

is an increasing function of t ∈ D.

As an application of (10), let us consider the following example.

Example 2.8. Let us assume that φ(t) = τ(t)µ̃(t) = 1− µ̃ ′(t), where the
last equality is due to (3). From (5) we thus have ψ(t) =

∫ t
0 φ(u)du =

t− µ̃(t) for all t > 0. In this case, from (10) we get

µ̃ψ(t) =
1

F(t)

∫ t

0
f (x)µ̃(x)dx, t ∈ D.

Hence, making use of Theorem 5.2. of Di Crescenzo and Longobardi [5],
we have

µ̃ψ(t) = C E (X ; t), t > 0, (12)

where C E (X ; t) is known as the dynamic cumulative entropy of X . Recall-
ing Corollary 6.1 of Di Crescenzo and Longobardi [5], we have that if X is
IMIT, then C E (X ; t) is increasing in t, and thus from (12) we obtain that
X is IWMIT in this case.

The following result deals with the WMIT and MIT functions.
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Lemma 2.9. Let X be an absolutely continuous non-negative random

variable with weighted mean inactivity time function µ̃ψ(t) defined as in

(10). Assume that there exist non-negative constants m and M such that

m≤ φ(t)≤M for all t ≥ 0. Then

m≤
µ̃ψ(t)
µ̃(t)

≤M for all t ∈ D. (13)

Lemma 2.9 allows us to obtain ordering relations between the WMIT and
MIT functions. Indeed, (i) if M = 1, then µ̃ψ(t)≤ µ̃(t) for all t ∈ D; (ii) if
m = 1, then µ̃ψ(t)≥ µ̃(t) for all t ∈ D.

For instance, if φ(t) = F(t), then M=1, and µ̃ψ(∞) =E[|X−X ′|]/2, where
X ′ is an independent copy of X , provided that the condition (11) is satisfied.

Recently, Toomaj and Di Crescenzo [14] showed that the variance of a
random variable X can be represented in terms of MIT function as follows:

σ
2(X) = E[µ̃2(X)], (14)

provided that the expectation exists. In what follows, we extend the result
(14) to the case of the transformed random variable ψ(X), where ψ(x)

is the cumulative weight function defined in (5). Indeed, in the following
theorem we express the variance of ψ(X) in terms of the WMIT function
(10) (see Di Crescenzo and Toomaj [16]).

Theorem 2.10. Let X be an absolutely continuous non-negative random

variable with WMIT function µ̃ψ(t), and having finite second moment

E[ψ2(X)]. Then

σ
2[ψ(X)] = E[µ̃2

ψ(X)]. (15)

As an application of Eq. (15), let us consider the following example.

Example 2.11. Consider a parallel system composed by m units hav-
ing lifetimes X1, . . . ,Xm, which are independent and identically distributed
(i.i.d.) absolutely continuous random variables with CDF F(x). The sys-
tem lifetime is thus Xm:m = max{X1, . . . ,Xm}, whose CDF is given by
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Fm:m(x) := P(Xm:m ≤ x) = [F(x)]m, x ≥ 0. Setting ψ(t) = F(t), and thus
φ(t) = f (t), from (10) we obtain, for t > 0,

µ̃ψ(Xm:m)(t)=
1

Fm:m(t)

∫ t

0
f (x)Fm:m(x)dx=

1
[F(t)]m

∫ t

0
f (x)[F(x)]m dx=

F(t)
m+1

.

Thanks to the use of Eq. (15), thus the variance of the probability integral
transformation F(Xm:m) can be obtained as

σ
2[F(Xm:m)] = m

∫
∞

0
f (x)[F(x)]m−1

[
F(x)
m+1

]2

dx =
m

(m+1)2(m+2)
.

In the next theorem, we state that when the weight function is bounded
between two real numbers, the ratio of standard deviation of transformed
random variable with respect to the standard deviation of the associated
random variable also lies down between the same bounds.

Theorem 2.12. Under the conditions of Lemma 2.9, it holds that

m≤ σ [ψ(X)]

σ(X)
≤M.

In particular, (i) if m = 0 and M = 1, then σ [ψ(X)] ≤ σ(X) and, (ii) if

m = 1 and M < ∞, then σ [ψ(X)]≥ σ(X).

Proof. The proof is immediately obtained from (13) and recalling (14) and
(15).

Now, let us consider two applications in the following examples.

Example 2.13. Let X and Y be non-negative random lifetimes with CDFs
F and G, respectively. Consider the function ψ(t) = G−1F(t), which is
increasing in t > 0. Due to (5), we have that φ(x)≥ 1 if and only if ψ(t)−t

is increasing in t. Supposing that X ≤disp Y, (we recall that X is said to be
smaller than Y in the dispersive order, denoted by X ≤disp Y, if and only if,

G−1(F(t))− t is increasing in t > 0, (16)

where G−1(u) = inf{x ∈ R+ : G(x) ≥ u}, u ∈ [0,1], denotes the left-
continuous quantile function of G(x).) One can conclude that ψ(t)− t =
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G−1F(t)− t is increasing t by recalling (16). Making use of Theorem 2.12,
we have

σ [ψ(X)] = σ(G−1F(X))≥ σ(X).

By noting that G−1F(X)
d
= Y, where d

= means equality in distribution, we
obtain the well-known result σ(X)≤ σ(Y ).

Example 2.14. Assume that X1,X2, . . . ,Xn are independent and identically
distributed random lifetimes with the common CDF F(x) and PDF f (x).
The ith smallest value is usually called the ith order statistic, and is denoted
by Xi:n, i = 1,2, . . . ,n. Let us set ψ(x) = F(x) and thus φ(x) = f (x). If S is
the support of f , then

inf
x∈S

f (x) =: m≤ f (x)≤M := sup
x∈S

f (x).

It is known that the probability integral transform Vi = F(Xi:n) has a beta
distribution with parameters i and n− i+1, respectively. Since

σ
2[Vi] = σ

2[F(Xi:n)] =
i(n− i+1)

(n+1)2(n+2)
, i = 1,2, . . . ,n,

from Theorem 2.12 we have

i(n− i+1)
M2(n+1)2(n+2)

≤ σ
2[Xi:n]≤

i(n− i+1)
m2(n+1)2(n+2)

, i = 1,2, . . . ,n

provided that 0 < m≤M < ∞. Specifically, after some simplifications the
average variance of the order statistics is bounded as follows:

1
6M2(n+1)

≤ 1
n

n

∑
i=1

σ
2[Xi:n]≤

1
6m2(n+1)

.

The latter result is useful to show that when n goes to infinity, then the
average variance of the order statistics vanishes, i.e.

lim
n→∞

1
n

n

∑
i=1

σ
2[Xi:n] = lim

n→∞

1
n

n

∑
i=1

σ
2[Xi] = 0,

provided that 0 < m≤M < ∞.
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