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Preface

The series of biennial workshops on copula theory which took place in Ferdowsi University
of Mashhad (2011 and 2013), Shahid Bahonar University of Kerman (2015) and Yazd
University (2017) with an emphasis on application in engineering sciences, agricultural
sciences, actuarial science, finance, reliability, survival analysis, economics and etc. is the
result for the decision of the scientific committee of the Ordered and Spatial Data Center
of Excellence (OSDCE) of Ferdowsi University of Mashhad (FUM) to organize workshops
and seminars every two years. This seminar is sponsored by the department of statistics,
OSDCE of FUM, Islamic world Science Citation database (ISC), Iranian Statistical Society
and Actuarial Society of Iran to provide suitable facilities for academics to have efficient
research cooperation and will be held at Faculty of Mathematical Sciences of FUM at 30
and 31 Jan. 2019. We hope all of the seminar committees provide a suitable satisfactory
atmosphere for the participants. After the first call of the seminar, 20 papers were accepted
as oral presentations and 7 as poster presentations by the referees and scientific committee.
The attendants and participants in the seminar are in summary 40 people which are
professors, students and researchers of different institutes around Iran. Finally, we would
like to extend our sincere gratitude to the Research Council of FUM, the administration of
Faculty of Mathematical Sciences, the OSDCE, the Islamic world Science Citation center,
the Iranian Statistical Society, Actuarial Society of Iran, the scientific committee, the
organizing committee, the referees, and the students and staff of the department of statistics
of FUM for their kind cooperation.

Mohammad Amini (Chair)
Jan, 2019
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On Stochastic Comparisons of Extreme Order

Statistics from the Proportional Odds Model of

Distributions

Bashkar, E. 1 Kundu, A. 2

1 Department of Statistics, Velayat University, Iranshahr, Iran
2 Department of Mathematics, Santipur College, Santipur Nadia, West Bengal, India

Abstract

In this paper, we study stochastic comparison of the smallest and largest order
statistics of two heterogeneous random vectors with dependent components having
proportional odds marginals and Archimedean copula structure in terms of the usual
stochastic order.

Keywords: Archimedean copula, Proportional odds model, Majorization, Usual
stochastic order.

1 Introduction

There is an extensive literature on different stochastic orderings among order statistics where
the observations come from different family of distributions. Some of these contributions

1esmaielbashkar@gmail.com
2bapai k@yahoo.com
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are due to [20] , [8], [21], [5], [6], [7] [24], [14], [13], [11], [16] and [9], [12], [2], [23]. A
recent review on the topic can be also found in [1]. Suppose order statistics arising from
random variables X1, . . . , Xn are denoted by X1:n ≤ . . . ≤ Xn:n. Then it is well-known
that the kth order statistic of a sample of size n characterizes the lifetime of a (n− k + 1)-
out-of-n system. Thus, the study of lifetimes of k-out-of-n systems is equivalent to the
study of the stochastic properties of order statistics. In particular, a 1-out-of-n system
corresponds to a parallel system and an n-out-of-n system corresponds to a series system.
Recently, some efforts are made to investigate stochastic comparisons on order statistics of
r.v.s with Archimedean copulas. See, for example, [3], [16], [15] and [10]. The proportional
odds (PO) model introduced by Bennet [4] is a very important model in survival analysis
context. In this paper, we study the smallest and largest order statistics from two dependent
samples with proportional odds (PO) samples. Throughout this paper, we use the notation
R = (−∞,+∞).

Let X and Y be two univariate random variables withsurvival functions F̄ = 1 − F
and Ḡ = 1 − G, respectively. Random variable X is said to be smaller than Y in the
usual stochastic order, denoted by X ≤st Y , if F̄ (x) ≤ Ḡ(x) for x. For a comprehensive
discussion on various stochastic orders, one can see [22]. A real function ϕ is n-monotone
on (a, b) ⊆ R if (−1)n−2ϕ(n−2) is decreasing and convex in (a, b) and (−1)kϕ(k)(x) ≥ 0 for all
x ∈ (a, b), k = 0, 1, . . . , n− 2, in which ϕ(i)(.) is the ith derivative of ϕ(.). For a n-monotone
(n ≥ 2) function ϕ : [0,+∞) −→ [0, 1] with ϕ(0) = 1 and limx→+∞ ϕ(x) = 0, let ψ = ϕ,−1

be the right continuous inverse of ψ, then

Cϕ(u1, . . . , un) = ϕ(ψ(u1) + . . .+ ψ(un)), for allui ∈ [0, 1], i = 1, . . . , n,

is called an Archimedean copula with generator ϕ. Archimedean copulas cover a wide range
of dependence structures including the independence copula with generator ϕ(t) = e−t. For
more on Archimedean copulas, readers may refer to [19] and [18].

It is well known that the notion of majorization is extremely useful and powerful
in establishing various inequalities. For preliminary notations and terminologies on
majorization theory, we refer the reader to [17]. Let x = (x1, . . . , xn) and y = (y1, . . . , yn)
be two real vectors anf x(1) ≤ . . . ≤ x(n) be the increasing arrangement of the components
of the vector x.

Definition 1. The vector x is said to be

(i) weakly supermajorized by the vector y (denoted by x
w

⪯ y) if
∑j

i=1 x(i) ≥
∑j

i=1 y(i) for
all j = 1, . . . , n,

(ii) majorized by the vector y (denoted by x
m

⪯ y) if
∑n

i=1 xi =
∑n

i=1 yi and
∑j

i=1 x(i) ≥∑j
i=1 y(i) for all j = 1, . . . , n− 1.
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Clearly, x
m

⪯ y implies x
w

⪯ y.
The random vector X = (X1, . . . , Xn) is said to follow the PH model if Xi has the

survival function Ḡi(x) =
αiF̄ (x)

1− ᾱiF̄ (x)
for αi > 0, i = 1, . . . , n, where F̄ is the baseline

survival function and α = (α1, . . . , αn) is the proportional odd vector. Specifically, by X ∼
PO(F̄ ,α, ϕ) we denote the sample having the Archimedean survival copula with generator
ϕ and following a PH model with baseline survival function F̄ and proportional odd vector
λ.

2 Main result

Now, we state our main results. For the PO samples with Archimedean survival copulas, we
present here the usual stochastic order on the sample minimum. The smallest order statistic
X1:n of the sample X gets survival function

ḠX1:n(x) = ϕ
( n∑

i=1

ψ(
αiF̄ (x)

1− ᾱiF̄ (x)
)
)
= J1(x,α, ϕ) (2.1)

Theorem 2.1. For X ∼ PO(F̄ ,α, ϕ1) and X∗ ∼ PO(F̄ ,α∗, ϕ2), if ψ2 ◦ϕ1 is super-additive,

then α
w

⪰ α∗ implies X1:n ≤st X
∗
1:n.

Proof. According to Equation (2.1), X1:n and X∗
1:n have their respective survival functions

J1(x,α, ϕ1) and J1(x,α
∗, ϕ2), for x ≥ 0. First we show that J1(x,α, ϕ1) is increasing and

Schur-concave function of αi, i = 1, . . . , n. Since ϕ1 is decreasing, we have

∂J1(x,α, ϕ1)

∂αi

=

F̄ (x)(1− F̄ (x))

(1− ᾱiF̄ (x))2
1

ϕ′
1(ψ1(

αiF̄ (x)

1− ᾱiF̄ (x)
))

ϕ′
1

( n∑
i=1

ψ1(
αiF̄ (x)

1− ᾱiF̄ (x)
)
)
≥ 0,

That is, J1(x,α, ϕ1) is increasing in αi for i = 1, . . . , n. Furthermore, for i ̸= j,

(αi − αj)
(∂J1(x,α, ϕ1)

∂αi

− ∂J1(x,α, ϕ1)

∂αj

)
=

(αi − αj)F̄ (x)(1− F̄ (x))ϕ′
1

( n∑
i=1

ψ1(
αiF̄ (x)

1− ᾱiF̄ (x)
)
)
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1

(1− ᾱiF̄ (x))2ϕ′
1(ψ1(

αiF̄ (x)

1− ᾱiF̄ (x)
))

− 1

(1− ᾱjF̄ (x))2ϕ′
1(ψ1(

αjF̄ (x)

1− ᾱjF̄ (x)
))

)
.

Let

h(αi) = (1− ᾱiF̄ (x))
2ϕ′

1(ψ1(
αiF̄ (x)

1− ᾱiF̄ (x)
)),

then, by the decreasing and convexity of ϕ1, we have

∂h(αi)

∂αi

= 2(1− ᾱiF̄ (x))F̄ (x)ϕ
′
1(ψ1(

αiF̄ (x)

1− ᾱiF̄ (x)
))+

F̄ (x)(1− F̄ (x))

ϕ′′
1(ψ1(

αiF̄ (x)

1− ᾱiF̄ (x)
))

ϕ′
1(ψ1(

αiF̄ (x)

1− ᾱiF̄ (x)
))

≤ 0.

So, for i ̸= j,

(αi − αj)
(∂J1(x,α, ϕ1)

∂αi

− ∂J1(x,α, ϕ1)

∂αj

)
≤ 0.

Then Schur-concavity of J1(x,α, ϕ1) follows from Theorem 3.A.4. in [17]. According to

Theorem 3.A.8 of [17] α
w

⪰ α∗ implies J1(x,α, ϕ1) ≤ J1(x,α
∗, ϕ1). On the other hand, since

ψ2 ◦ ϕ1 is super-additive by Lemma A.1. of [15], we have J1(x,α
∗, ϕ1) ≤ J1(x,α

∗, ϕ2). So,
it holds that

J1(x,α, ϕ1) ≤ J1(x,α
∗, ϕ1) ≤ J1(x,α

∗, ϕ2).

That is, X1:n ≤st X
∗
1:n.

In the following Theorem, we study the largest order statistic from PO models with
Archimedean copula. The largest order statistic Xn:n of the sample X gets distribution
function

GXn:n(x) = ϕ
( n∑

i=1

ψ(
1− F̄ (x)

1− ᾱiF̄ (x)
)
)
= J2(x,α, ϕ) (2.2)

Theorem 2.2. For X ∼ PO(F̄ ,α, ϕ1) and X∗ ∼ PO(F̄ ,α∗, ϕ2), if ϕ1 or ϕ2 is log-concave,

and ψ1 ◦ ϕ2 is super-additive, then α
w

⪰ α∗ implies Xn:n ≤st X
∗
n:n.

Proof. According to Equation (2.2), Xn:n and X∗
n:n have their respective distribution

functions J2(x,α, ϕ1) and J2(x,α
∗, ϕ2), for x ≥ 0. We only prove the case that ϕ1 is

log-concave, and the other case can be finished similarly. First we show that J2(x,α, ϕ1) is
decreasing and Schur-convex function of αi, i = 1, . . . , n. Since ϕ1 is decreasing, we have

∂J2(x,α, ϕ1)

∂αi

=
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−F̄ (x)(1− F̄ (x))

(1− ᾱiF̄ (x))2
1

ϕ′
1(ψ1(

1− F̄ (x)

1− ᾱiF̄ (x)
))

ϕ′
1

( n∑
i=1

ψ1(
1− F̄ (x)

1− ᾱiF̄ (x)
)
)
≤ 0,

That is, J2(x,α, ϕ1) is decreasing in αi for i = 1, . . . , n. Furthermore, for i ̸= j,

(αi − αj)
(∂J2(x,α, ϕ1)

∂αi

− ∂J2(x,α, ϕ1)

∂αj

)
=

(αi − αj)(−F̄ (x))ϕ′
1

( n∑
i=1

ψ1(
1− F̄ (x)

1− ᾱiF̄ (x)
)
)

(
1

1− ᾱiF̄ (x)

1− F̄ (x)

1− ᾱiF̄ (x)

ϕ′
1(ψ1(

1− F̄ (x)

1− ᾱiF̄ (x)
))

− 1

1− ᾱjF̄ (x)

1− F̄ (x)

1− ᾱjF̄ (x)

ϕ′
1(ψ1(

1− F̄ (x)

1− ᾱjF̄ (x)
))

)
.

Note that the log-concavity of ϕ1 implies the increasing property of ϕ1

ϕ′
1
. Since ψ1(

1− F̄ (x)

1− ᾱiF̄ (x)
)

is increasing in αi, then

1− F̄ (x)

1− ᾱiF̄ (x)

ϕ′
1(ψ1(

1− F̄ (x)

1− ᾱiF̄ (x)
))

=

ϕ1(ψ1(
1− F̄ (x)

1− ᾱiF̄ (x)
))

ϕ′
1(ψ1(

1− F̄ (x)

1− ᾱjF̄ (x)
))

is increasing in αi.

Also
1

1− ᾱiF̄ (x)
is a decreasing function of αi, and thus

1

1− ᾱiF̄ (x)

1− F̄ (x)

1− ᾱiF̄ (x)

ϕ′
1(ψ1(

1− F̄ (x)

1− ᾱiF̄ (x)
))

is

increasing in αi. So, for i ̸= j,

(αi − αj)
(∂J2(x,α, ϕ1)

∂αi

− ∂J2(x,α, ϕ1)

∂αj

)
≥ 0.

Then Schur-convexity of J2(x,α, ϕ1) follows from Theorem 3.A.4. in [17]. According to

Theorem 3.A.8 of [17] α
w

⪰ α∗ implies J2(x,α, ϕ1) ≥ J2(x,α
∗, ϕ1). On the other hand, since

ψ1 ◦ ϕ2 is super-additive by Lemma A.1. of [15], we have J2(x,α
∗, ϕ1) ≥ J2(x,α

∗, ϕ2). So,
it holds that

J2(x,α, ϕ1) ≥ J2(x,α
∗, ϕ1) ≥ J2(x,α

∗, ϕ2).

That is, Xn:n ≤st X
∗
n:n.
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3 Conclusions

In this paper, we studied extreme order statistics from random variables following the
proportional odds model. In the presence of the Archimedean copula for the random
variables, we obtained new results on the usual stochastic ordering of the smallest and
largest order statistics.
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Characterizations of Circular−Circular Copula Using

Extended Copulas

Hatami, M. 1 Alamatsaz, M. H. 2

Department of Statistics, University of Isfahan, Isfahan, Iran

Abstract

Joining marginal circular distribution functions by copulas does not necessarily
lead to joint circular distribution functions. In this paper, considering an extended
notion of copulas, we propose a new classe of bivariate copulas, called circular-circular
copulas, in order to construct bivariate circular distributions with known univariate
circular marginals. We shall provide new definition and some novel characterizations
for such extended copulas and study their useful properties. We, then, describe
a method for constructing circular-circular copulas. Nonnegative trigonometric
sums (NNTS) copula is introduced and its related measures of dependence are
obtained. Finally, we shall develop a method of generalizing circular-circular copulas
to multivariate circular copulas.

Keywords: Nonnegative trigonometric sums, Bivariate circular distribution,
Multivariate circular copula.
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1 Introduction

Copula modeling is a useful and popular method in many areas of Statistics such as
in Finance, Hydrology, Drought study, among many others. Copulas are of interest
to statisticians for two main reasons: first as a way of studying scale-free measures of
dependence, and second as a starting point for constructing families of bivariate (and more
generally, multivariate) distributions.

Copulas do not necessarily lead to a joint circular distribution function when linking
marginal circular distribution functions. The main concern of this paper is thus to introduce
classes of extended copulas that preserve the circular characteristics by the resulting joint
distribution functions.

The paper is organized as follows. In Section 2 we recall definitions of circular distribution
functions and standard (linear) copulas. We, then, introduce our classe of circular-circular
copulas and study their general characteristics in Section 3. Some novel and interesting
characterizations are also provided for such extended copulas in this sections. In Section
4 we shall reveal a method of constructing circular-circular copulas and, in particular, we
shall introduce nonnegative trigonometric sums (NNTS) copulas. In Section 5 we obtain
related dependence measures of the NNTS copula. In Section 6 we shall develop a method
for constructing multivariate circular copulas from circular-circular copulas.

2 Circular distribution function and copula

The circular density of a univariate absolutely continuous circular random variable, Θ,
defined on the unit circle, S1, is a function f(θ) satisfying the conditions:

1. f(θ) ≥ 0 for −∞ < θ <∞,

2. f(θ + 2kπ) = f(θ) for k ∈ Z,−∞ < θ <∞,

3.
∫ 2π

0
f(θ)dθ = 1.

Let F (θ) =
∫ θ

0
f(w)dw. A circular distribution function (df) is defined by F restricted on

[0, 2π], i.e.,
P (0 < Θ ≤ θ) = F (θ), 0 ≤ θ ≤ 2π, (2.1)

such that
F (θ + 2π)− F (θ) = 1, −∞ < θ <∞. (2.2)

As we observe, the circular df F defined above differs from a linear df in having the following
mathematical properties:

lim
θ→−∞

F (θ) = −∞, lim
θ→∞

F (θ) = ∞.
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By definition, F (0) = 0, F (2π) = 1 ([7]). Eq. (2.2) can be generalized as

F (θ + 2kπ)− F (θ) = k, k ∈ Z, −∞ < θ <∞. (2.3)

In general, then, the values taken by the mathematical form of a circular df, i.e. F , are
clearly not probabilities. Similar to the univariate case, the joint distribution function of a
bivariate circular random vector must satisfy certain properties. The density function of a
bivariate circular random vector is defined as follows:

Definition 1. Let f be a bivariate function defined on the surface of a torus, S1 × S1, such
that

1. f(θ1, θ2) ≥ 0 for −∞ < θ1, θ2 <∞,

2. f(θ1 + 2kπ, θ2 + 2jπ) = f(θ1, θ2) for k, j ∈ Z,−∞ < θ1, θ2 <∞,

3.
∫ 2π

0

∫ 2π

0
f(θ1, θ2)dθ2dθ1 = 1.

Then, f(θ1, θ2) is said to be the bivariate circular probability density function (pdf) of a
circular random vector (Θ1,Θ2).

Let

F (θ1, θ2) =

∫ θ1

0

∫ θ2

0

f(w, z)dzdw.

A bivariate circular df is defined by F restricted on [0, 2π]× [0, 2π], i.e.,

P (0 ≤ Θ1 ≤ θ1, 0 ≤ Θ2 ≤ θ2) = F (θ1, θ2), 0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 2π. (2.4)

It is easily observed that we have

F (θ1 + 2π, θ2 + 2π) = 1 + F1(θ1) + F2(θ2) + F (θ1, θ2),

and thus

F (θ1 + 2π, θ2 + 2π)− F (θ1, θ2) = 1 + F1(θ1) + F2(θ2), −∞ < θ1, θ2 <∞, (2.5)

where f1, f2 stand for the marginal densities and F1, F2 for the associated dfs. We have used
here the fact that

F (θ1 + 2π, θ2) = F2(θ2) + F (θ1, θ2),

which we can summarize as

F (θ1 + 2π, θ2)− F (θ1, θ2) = F2(θ2), −∞ < θ1, θ2 <∞. (2.6)
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Similarly, we obtain F (θ1, θ2 + 2π)− F (θ1, θ2) = F1(θ1), −∞ < θ1, θ2 <∞.
It is necessary to note that the marginal and joint distribution functions F1(θ1), F2(θ2)

and F (θ1, θ2) are mathematically defined on R and R2, respectively, and they are circular
distribution functions on the restricted intervals 0 ≤ θ1, θ2 ≤ 2π. Due to the periodicity of
their density functions, these functions possess certain unique characteristics such as those
in (2.2)–(2.6). In what follows, we make use of property (2.5) to check whether a bivariate
joint df is circular or not.

Lemma 2.1. Let F1(θ1) and F2(θ2) be circular marginal df ’s and F (θ1, θ2) be their bivariate
joint df on 0 ≤ θ1, θ2 ≤ 2π such that for −∞ < θ1, θ2 <∞, F (θ1+2π, θ2+2π)−F (θ1, θ2) =
1 + F1(θ1) + F2(θ2). Then, F (θ1, θ2) is a bivariate circular df.

3 Circular-circular copulas and their general

properties

Let C be a copula with density c. Then, the joint density function of circular marginals F1

and F2 is f(θ1, θ2) = f1(θ1)f2(θ2)c(F1(θ1), F2(θ2)). This density is a bivariate circular density
function if it satisfies condition 2 of Definition 1. But, due to the fact that periodicity of
circular distributions, here F1(θ1+2π) and F2(θ2+2π) are not restricted to [0, 1], we cannot
deal with periodicity of the density function f . To overcome this situation, we have to extend
the notion of copula over R2. Thus, we introduce the notion of extended copulas. We call
a bivariate function C(u, v) : R2 → R extended copula if its restriction to [0, 1] × [0, 1] is
a standard (linear) copula. For instance, C(u, v) = uv : R2 → R is an extended copula
because uv : [0, 1]2 → [0, 1] is the standard independent copula.

Now, the question is that, is there at least one extended copula C such that
C(F1(θ1), F2(θ2)) leads to a joint circular distribution function?
To answer this question, consider the extended copula C(u, v) = uv : R2 → R. We
have C(F1(θ1), F2(θ2)) = F1(θ1)F2(θ2). Since 0 ≤ Fi(θi) ≤ 1 for 0 ≤ θi ≤ 2π; i = 1, 2;
here extended copula is an standard copula for which Sklar’s Theorem holds. Therefore,
F (θ1, θ2) = C(F1(θ1), F2(θ2)) = F1(θ1)F2(θ2), 0 ≤ θ1, θ2 ≤ 2π, is a distribution function.
Also, for −∞ < θ1, θ2 < ∞, F (θ1 + 2π, θ2 + 2π) − F (θ1, θ2) = 1 + F1(θ1) + F2(θ2).
Thus, C(F1(θ1), F2(θ2)) = F1(θ1)F2(θ2) satisfies Lemma 2.1 and hence it is a joint circular
distribution function. Therefore, the answer is positive, i.e., the set of such extended copulas
is not empty. In this section, we develop a large class of such extended copulas and discuss
their properties.

Definition 2. Let F1 and F2 be two univariate circular distribution functions and Ccc be a
class of extended copulas such that for any C ∈ Ccc, F (θ1, θ2) = C(F1(θ1), F2(θ2)) is a joint
circular distribution function. Then, we call Ccc the class of circular-circular (cc) copulas.
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In the following, we give a useful characterization for the members of the set Ccc.

Theorem 3.1. Let C be an absolutely continuous extended copula. Then C ∈ Ccc if, and
only if, the extended copula density, c, is a 1-periodic function.

According to Theorem 3.1, we can define cc copula densities as follows. A function c is
the bivariate probability density function of an absolutely continuous cc copula if, and only
if,

1. c(u, v) ≥ 0 for −∞ < u, v <∞,

2. c(u+ k, v + j) = c(u, v) for k, j ∈ Z,−∞ < u, v <∞,

3.
∫ 1

0

∫ 1

0
c(u, v)dudv = 1,

4. c(u) =
∫ 1

0
c(u, v)dv = 1, c(v) =

∫ 1

0
c(u, v)du = 1.

Let

C(u, v) =

∫ u

0

∫ v

0

c(w, z)dzdw.

Then, cc copula, i.e., the bivariate df corresponding to c, is defined by C restricted on
[0, 1]× [0, 1], i.e.,

P (0 ≤ U ≤ u, 0 ≤ V ≤ v) = C(u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

It is easily observed that we have

C(1 + u, 1 + v) = 1 + u+ v + C(u, v),

and thus,
C(1 + u, 1 + v)− C(u, v) = 1 + u+ v, −∞ < u, v <∞. (3.1)

Further, we have

C(1 + u, v) = v + C(u, v), −∞ < u, v <∞,

C(u, 1 + v) = u+ C(u, v), −∞ < u, v <∞.
(3.2)

Due to the periodicity of c(u, v), the bivariate function C(u, v) can be defined on R2.
Therefore, C(u, v) : R2 → R can be seen as a extended copula whose restriction to [0, 1]×[0, 1]
is the standard (linear) copula. Here, we present a new definition for cc copulas.

Definition 3. A bivariate function C(u, v) is a cc copula, i.e., C ∈ Ccc, if, it satisfies the
following two conditions

1. C(u, v) is a copula for [u, v] ∈ [0, 1]× [0, 1],
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2. C(1 + u, 1 + v)− C(u, v) = 1 + u+ v for [u, v] ∈ R× R.

We also have the following characterization for certain subclass of Ccc. De la Pena [1]
showed that, any absolutely continuous copula can be represented by the form C(u, v) =
uv+A(u, v). However, determining the function A(u, v) for a given copula is not an easy task.
In the following theorem, we show that cc copula can be represented as C(u, v) = uv+A(u, v).
Conditions on A(u, v) for a cc copula are specifically mentioned in Theorem 3.2. We can
also use the proof of Theorem 3.2 to find A(u, v) uniquely for any cc copula.

Theorem 3.2. Let C be absolutely continuous. Then, C ∈ Ccc if, and only if, C has the
form

C(u, v) = uv + A(u, v), (3.3)

where A(u, v) is an absolutely continuous function satisfying the following conditions:

a) A(u, 0) = A(0, v) = A(u, 1) = A(1, v) = 0, for −∞ < u, v <∞,

b) A(u1, v1)−A(u1, v2)−A(u2, v1)+A(u2, v2) ≥ (u2−u1)(v1−v2) for every u1, u2, v1, v2 ∈
[0, 1] such that u1 ≤ u2 and v1 ≤ v2,

c) A(u+ 1, v + 1) = A(u, v), for −∞ < u, v <∞.

4 Construction of cc copulas

The main problem in constructing parametric extended copulas of class Ccc is finding the
function A(u, v), in Eq. (1.6), satisfying the conditions of Theorem 3.2.

Here, we shall introduce an approach to construct cc copulas by using truncated Fourier
series, called trigonometric polynomials. A method for modeling univariate, bivariate circular
and spherical data based on nonnegative trigonometric sums is applied by [2]. A nonnegative
trigonometric sums is a partial sum of the terms in a Fourier series. We are looking for
conditions that makes the truncated Fourier series

f(u, v) = 1 + 4
k∑

n=1

j∑
m=1

αn,m cos (2πnu) cos (2πmv)

+ 4
k∑

n=1

j∑
m=1

βn,m cos (2πnu) sin (2πmv)

+ 4
k∑

n=1

j∑
m=1

γn,m sin (2πnu) cos (2πmv)

+ 4
k∑

n=1

j∑
m=1

δn,m sin (2πnu) sin (2πmv) ,

(4.1)
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nonnegative. For this propose, we express the truncated Fourier series (4.1) as the squared
norm of a sum of complex numbers, i.e.,

f(u, v) =

∥∥∥∥∥
k∑

n=0

j∑
m=0

pn,me
i2π(nu+mv)

∥∥∥∥∥
2

=
k∑

n1=0

j∑
m1=0

k∑
n2=0

j∑
m2=0

pn1,m1 p̄n2,m2e
i2π[(n1−n2)u+(m1−m2)v] ,

(4.2)

such that

k∑
n=0

j∑
m=0

|pn,m|2 = 1,
k−n∑
ν=0

j∑
η=0

pν+n,ηp̄ν,η = 0,
k∑

ν=0

j−m∑
η=0

pν,η+mp̄ν,η = 0,

where pn,m, n = 0, 1, ..., k, m = 0, 1, ..., j, are complex numbers and p̄n,m refers to the
complex conjugate of pn,m. After extending (4.2), we have

f(u, v) = 1 + 4
k∑

n=1

j∑
m=1

an,m cos (2πnu+ 2πmv) + bn,m sin (2πnu+ 2πmv)

+ 4
k∑

n=1

j∑
m=1

cn,m cos (2πnu− 2πmv) + dn,m sin (2πnu− 2πmv) .

(4.3)

Thus, the bivariate trigonometric polynomial of order (k, j) in (4.3) is nonnegative for every
real u and v if there exist complex numbers pn,m, n = 1, ..., k,m = 1, ..., j, such that

an,m − ibn,m = 2
k−n∑
ν=0

j−m∑
η=0

pν+n,η+mp̄ν,η, cn,m − idn,m = 2
k−n∑
ν=0

j∑
η=m

pν+n,η−mp̄ν,η,

for n = 1, ..., k,m = 1, ..., j. Consequently, the function (4.3) is a density function where we
can be rewritten as (4.1). Addition to this distribution having uniform marginals, (4.3) is
a cc copula density. The trigonometric moments of this distribution are easily expressed in
terms of the parameters of the distribution. Indeed, given the orthogonality properties of
the terms of a Fourier series, we have:

αn,m = E (cos (2πnu) cos (2πmv)) = an,m + cn,m,

βn,m = E (cos (2πnu) sin (2πmv)) = bn,m − dn,m,

γn,m = E (sin (2πnu) cos (2πmv)) = bn,m + dn,m,

δn,m = E (sin (2πnu) sin (2πmv)) = cn,m − an,m.
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Thus, nonnegative trigonometric sums (NNTS) copula is obtained as

C(u, v) = uv + 4
k∑

n=1

j∑
m=1

an,m + cn,m
4π2mn

sin (2πnu) sin (2πmv)

+ 4
k∑

n=1

j∑
m=1

bn,m − dn,m
4π2mn

sin (2πnu) (1− cos (2πmv))

+ 4
k∑

n=1

j∑
m=1

bn,m + dn,m
4π2mn

(1− cos (2πnu)) sin (2πmv)

+ 4
k∑

n=1

j∑
m=1

cn,m − an,m
4π2mn

(cos (2πnu)− 1)(cos (2πmv)− 1),

= uv + A(u, v), ∀ n = 1, ..., k,m = 1, ..., j.

Note that the NNTS copula for the special case an,m = bn,m = cn,m = dn,m = 0, n =
1, ..., k and m = 1, ..., j, coincides with the independent copula. T

5 Measures of association

In this section, we consider measures of association for either circular data or usual linear (non
circular) data, because the NNTS copula can be used circular as well as linear distribution
functions. We calculate four dependence measures for circular data and three measures of
association for linear data.

Theorem 5.1. The values of Kendall’s tau, Spearman’s rho and Gini’s gamma associated
with NNTS copula, C, are, respectively, given by

τC =
8

π2

k∑
n=1

j∑
m=1

1

mn
(δn,m + δn,mαn,m − γn,mβn,m),

ρC =
3

π2

k∑
n=1

j∑
m=1

1

mn
δn,m

and

φC =
3

π2

[
j∑

m=1

1

m2
αm,m +

k∑
n=1

j∑
m=1

3

n
δn,m

]
.

We consider four dependence measures for circular data, namely those of [3,4,5,6].
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Theorem 5.2. The values of dependence measures of Fisher and Lee (ρFL), Jammalamadaka
and Sarma (ρJS), Johnson and Wehrly (ρJW ) and Jupp and Mardia (ρJM), for the circula
density of NNTS are, respectively, given by ρFL = 2(α1,1δ1,1 + β1,1γ1,1), ρJS =

√
ρ1 −

√
ρ2,

ρJW =
√
1/2

(
α2
1,1 + β2

1,1 + γ21,1 + δ21,1 +
√
ρ1ρ2

)1/2
and

ρJM = 4(α2
1,1 + β2

1,1 + γ21,1 + δ21,1),

where ρ1 = (α1,1 + δ1,1)
2 + (γ1,1 − β1,1)

2 and ρ2 = (α1,1 − δ1,1)
2 + (γ1,1 + β1,1)

2.

6 A multivariate generalization

Here, we present a method for constructing a multivariate circular copula (circular copulas
of dimension n > 2). In this method, multivariate circular copulas are obtained directly in
terms of cc copulas.

We can obtain results similar to Theorem 3.1 and Definition 3 for multivariate circular
copulas.

Theorem 6.1. Let C be an absolutely continuous multivariate extended copula. Then, C is
a multivariate circular copula if, and only if, the multivariate extended copula density, c, is
a 1-periodic function.

According to Theorem 6.1, we may define multivariate circular copula densities as follows.
A function c is the multivariate probability density function of an absolutely continuous
multivariate circular copula if, and only if,

1. c(u1, ..., un) ≥ 0 for −∞ < u1, ..., un <∞,

2. c(u1 + k1, ..., un + kn) = c(u1, ..., un) for k1, ..., kn ∈ Z,−∞ < u1, ..., un <∞,

3.
∫ 1

0
...
∫ 1

0
c(u1, ..., un)du1...dun = 1,

4. c(ui) =
∫ 1

0
c(u1, ..., un)dui = 1, i = 1, ...n.

We may, then, define multivariate cc copulas as below.

Definition 4. A multivariate function C(u1, ..., un) is a multivariate circular copula if it
satisfies the following two conditions

1. C(u1, ..., un) be a multivariate copula for [u1, ..., un] ∈ [0, 1]× ...× [0, 1].
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2.

C(u1 + 1, ..., un + 1) =1 +
n∑

i=1

ui +
∑

1≤j1<j2≤n

Cj1,j2(uj1 , uj2)

+ ... +
∑

1≤j1<...<jn−1≤n

Cj1,...,jn−1(uj1 , ..., ujn−1),

+ C(u1, ..., un), for [u1, ..., un] ∈ R× ...× R.

Characterization of multivariate circular copulas is more complicated than cc copulas. In
what follows, we obtain a multivariate circular copula using cc copulas.

Theorem 6.2. Let C1, ..., Cn be n cc copulas. Then,

C(u1, ..., un) =

∫ 1

0

∂

∂t
C1(u1, t).

∂

∂t
C2(u2, t)....

∂

∂t
Cn(un, t)dt

is a multivariate circular copula of the form

C(u1, ..., un) =
n∏

i=1

ui +
∑

1≤j1≤n

gj1(uj1)
n∏

i=1
i ̸=j1

ui +
∑

1≤j1<j2≤n

gj1,j2(uj1 , uj2)
n∏

i=1
i ̸=j1,j2

ui

+ ... +
∑

1≤j1<...<jn−1≤n

gj1,...,jn−1(uj1 , ..., ujn−1)
n∏

i=1
i ̸=j1,...,jn−1

ui + g1,...,n(u1, ..., un),

where g1,...,k(u1, ..., uk), k = 1, ..., n, are 1-periodic k-variate functions.

Note that, using the condition (a) of Theorem 3.2 in the bivariate case, the copula’s form
reduces to

C(u1, u2) = C(u1, u2, 1, ..., 1) = u1u2 + g1,2(u1, u2).
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Abstract

This paper extend the compound Poisson risk model to consider the distribution
of the maximum surplus before failure when the claim amounts and claim inter-arrival
times are depended via a Sarmanov copula. We obtain integro-differential equation
for this distribution which satisfies integro-differential equation in the state of
independence and dependence via Farlie-Gumbel-Morgenstern (FGM) copula.

Keywords: Risk Models, Sarmanov Copula, Distribution of the Maximum
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1 Introduction

In the recent researches, within the statistical world, modern risk management techniques
have an essential role [10]. The collective risk theory which has been studied in different

1ahmadhosam116@gmail.com
2m-amini@um.ac.ir
3sadeghpour@um.ac.ir

27



Fifth Seminar on Copula Theory and its Applications 28

models of the risk business company is one of the famous problems of nonlife insurance field.
By presenting an insurance risk model, we have to study the failure probability, i.e., the
probability that the risk business ever will below some specified value, thus take risk control
of the nonlife business.

Mostly, insurance has been built with had been taking in consideration of independence
and the law of large numbers has governed the determination of premiums, the incremental
complexity of insurance and reinsurance products has led to the increased actuarial interest
in the modeling of dependent risk [3]. Classic risk models depend on an assumption of
independence among the claim amounts and the interclaim times. This hypothesis simplifies
the study of many quantities under such a framework, however, it has proven to be inadequate
and too restrictive in many cases. For example, in Nikoloulopoulos and Karlis [11], they point
out that on the occurrence of a catastrophe, the total claim amount and the time elapsed
since the previous catastrophe are dependent.
Albrecher and Teugels [1] relax the independence assumptions by introducing an arbitrary
dependence structure via a copula for the interclaim time and the subsequent claim size.
Recently, some risk models that allow for specific dependence between the claim amounts
and the inter-claim times have been studied, for example in [5].
Cossette et al [4] extended the classical compound Poisson risk model to a dependence
structure in which the claim amounts and claim inter-arrival times are dependent but a
FarlieGumbelMorgenstern (FGM) copula, and Cossette et al [3] supposed the dependence
model via a generalized FGM copula.
The aim of this paper is to analyze the probability of the maximum surplus before failure
in a risk model which has dependence structure between claim sizes and inter-claim times
via Sarmanov copula which is a general case of FGM copula that is studied in previous
papers. We extend the classical compound Poisson risk model to assume the distribution of
the maximum surplus before failure where the claim sizes depend on inter-claim times via
the Sarmanov copula.
In this research which will be introduced below, we have used a dependence structure among
the claim amounts and the interclaim times determined with the Sarmanov copula to the
compound Poisson risk model. In our dependent model, we have studied the probability of
the maximum surplus before failure and obtain the integro-differential equation for it.
In the statistical papers, many writers (see e.g. Lin & Sendova [9], Cheung & Landriault
[2] and Jiang et al. [6]) examined the risk models under the hypotheses that claim sizes are
independent of the inter-claim times.
With the help of these hypotheses, various equations can be explicitly calculated for certain
classes of claim size distributions such as joint and marginal distributions of failure time, the
surplus immediately before failure, the deficit at failure and the claim size causing failure.
Some of the risk models that allow for a specific dependence between claim sizes and inter-
claim times are considered. For example, Zhang & Yang [12] examined the GerberShiu
function in the compound Poisson risk model by propagation with the dependence between
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claim sizes and inter-claim times.

2 The Sarmanov families

Let (X,Y ) be a bivariate absolutely continuous random variable with the distribution
function

HX,Y (x, y) = F (x)G(y){1 + θϕ1(F (x))ϕ2(G(y))}, x, y ∈ R, (2.1)

such that E[ϕ1(X)] = E[ϕ2(Y )] = 0 and 1 + θϕ1(x)ϕ2(y) ≥ 0, and the kernels ϕ1(x), ϕ2(y)
are differentiable functions on unit interval so that H(x, y) becomes a distribution function
with absolutely continuous marginals F (x) and G(y), and in this case Sarmanov copula will
be

C(u, v) = uv(1 + θϕ1(u)ϕ2(v)), 0 ≤ u, v ≤ 1. (2.2)

If ϕ1(t) = ϕ2(t) = 1− t, then we have the FGM copula.

3 The dependent risk model

Consider the surplus process

R(t) = u+ ct−
N(t)∑
i=1

Xi, t ≥ 0, (3.1)

where u ≥ 0 is the initial surplus, c represents the insurer’s premium income per unit
time. Let {X1, X2, ...} be independent and identically distributed (i.i.d.) positive random
variables representing the successive individual claim amounts. These random variables,
identically distributed as the canonical random variable X, are hypothesized to have a
common cumulative distribution function F (x), x ≥ 0, with probability density function
f(x), of which the Laplace transform is f̃(s) =

∫∞
0
e−sxf(x)dx <∞.

The counting processN(t) is a renewal process which is the number of claims up to time t and
is assigned as N(t) = sup{n : W1+W2+...+Wn ≤ t} where the inter-claim times {Wi}i=1 are
assumed (i.i.d) as the canonical r.v. W, have exponential distributionK(t) = 1−e−λt, t ≥ 0,
and its Laplace transform k̃(s) = λ

λ+s
.

In addition, we suppose that {(Xi,Wi), i ∈ N+} forms a sequence of i.i.d. random vectors
distributed as the canonical r.v. (X,W ), in which the components may be dependent. Now,
we use the Sarmanov copula to define the dependence between the claim size and the inter-
claim time. We have from (2.1)

FX,W (x, t) = F (x)K(t) (1 + θϕ1(F (x))ϕ2(K(t))) ,
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and the joint p.d.f of (X,W ) is given by

fX,W (x, t) = λe−λt + θg(t).h(x), (3.2)

where

h(x) = f(x)ϕ1(F (x)) + F (x)ϕ́1(F (x)),

and

g(t) = λe−λtϕ2(K(t)) + (1− e−λt)ϕ́2(K(t)).

Let T denote the time to failure, then the probability of ultimate failure with initial surplus
u is defined by

ψ(u) = P (T <∞|R(0) = u) .

4 The distribution of the maximum surplus before

failure

For 0 ≤ u ≤ b, let

G(u, b) = P

(
sup

0≤t≤T
R(t) < b, T <∞|R(0) = u

)
,

denote the probability that failure occurs without the surplus process (3.1) reaching level b
prior to failure, obviously, G(u, b) = 0 for b ≤ u.
Note that G(u, b) maybe viewed as the distribution of the maximum surplus before failure.
In the following, we derive that G(u, b) satisfies an integro-differential equation, let I and D
represent the identity and the differentiation operators with respect to (w.r.t) u.

Theorem 4.1. For 0 ≤ u ≤ b, the probability G(u, b) satisfies the Integro-differential
equation (

−D2 +
λ2

c2
I
)
G(u, b) =

(
λ2

c2
I +

λ

c
D
)
γ1(u) + θ

(
λ2

c2
I − D2

)
M(u), (4.1)

where

γ1(u) =

∫ u

0

G(u− x, b)f(x)dx+

∫ ∞

u

f(x)dx, (4.2)
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γ2(u) =

∫ u

0

G(u− x, b)h(x)dx+

∫ ∞

u

h(x)dx, (4.3)

and

M(u) =

∫ b−u
c

0

g(t)γ2(u+ ct)dt. (4.4)

Proof. By conditional on the time and the amount of the first claim, we determine that

G(u, b) =

∫ b−u
c

0

∫ u+ct

0

G(u+ ct− x, b)fX,W (x, t)dxdt+

∫ b−u
c

0

∫ ∞

u+ct

fX,W (x, t)dxdt (4.5)

exchanging (1.7) in (4.5) leads to

G(u, b) =

∫ b−u
c

0

∫ u+ct

0

G(u+ ct− x, b)λe−λtf(x)dxdt

+ θ

∫ b−u
c

0

∫ u+ct

0

G(u+ ct− x, b)g(t)h(x)dxdt

+

∫ b−u
c

0

∫ ∞

u+ct

λe−λtf(x)dxdt

+ θ

∫ b−u
c

0

∫ ∞

u+ct

g(t)h(x)dxdt.

By (4.2), (4.3) and (4.4) we have

G(u, b) =

∫ b−u
c

0

λe−λtγ1(u+ ct)dt+ θM(u).

With u+ ct = s, we have

G(u, b) =

∫ b

u

λe−λ s−u
c γ1(s)

1

c
ds+ θM(u). (4.6)

Differentiation the two sides of (4.6) w.r.t u, we acquire

∂G(u, b)

∂u
=

∫ b

u

λ2

c
e−λ s−u

c γ1(s)
1

c
ds− λ

c
γ1(u) + θ.Ḿ(u), (4.7)

thanks to (4.6) and (4.7) can be rewritten as(
λ

c
I − D

)
G(u, b) =

λ

c
θM(u) +

λ

c
γ1(u)− θḾ(u). (4.8)
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Differentiation (4.8) w.r.t u once again and with some rearrangements, we obtain(
λ

c
D −D2

)
G(u, b) =

λ

c
θḾ(u) +

λ

c
γ́1(u)− θ

´́
M(u), (4.9)

and with help (4.8) the equation (4.9) leads to (4.1).

Remark 4.2. In particular, if ϕ1(t) = ϕ2(t) = 1− t, (4.1) satisfies equation (3.1) in [5] which
relates to the consequence of the distribution of the maximum surplus before destroy G(u, b)
when X and W are dependent with FGM copula function.

Remark 4.3. If θ = 0, (4.9) coincides with equation (2.6) when n = 1 in [7] and (4.1) relates
to the result of the distribution of the maximum surplus before failure G(u, b) when X is
independent of W as in the classical compound Poisson risk model.

Remark 4.4. Furthermore, by taking the Laplace transform of (4.1), we may comprehend
this second order differential equation and determine a correct portrayal for G(u, b), which
is additionally the solution of a defective renewal equation.
But G(u, b) can be assessed through this defective renewal function only for a few special
choices of copula functions, and special choices of claim amount distributions combinations
of exponential [5], a mixture of Erlangs, etc., since its representation is rather involved.
Usually, we could only obtain asymptotic for G(u, b) for general claim amount distributions.

Definition 1. Suppose that for 0 ≤ u ≤ b

τ b = inf{t > 0, R(t) ≥ b|R(0) = u}, (4.10)

to be the first time that the surplus process up crosses the level b, and

χ(u, b) = P (T > τ b|R(0) = u)

to be the probability that the surplus process attains a given level b from initial surplus u
without first falling below zero. Since eventually either failure occurs without the surplus
process attaining level b or the surplus attains level b, then we have χ(u, b) = 1−G(u, b).

Proposition 4.5. For 0 ≤ u ≤ b, the probability χ(u, b) satisfies the Integro-differential
equation(

−D2 +
λ2

c2
I
)
χ(u, b) =

(
λ2

c2
I +

λ

c
D
)
µ1(u)− θ

(
λ2

c2
I − D2

)
L(u), (4.11)

where

µ1(u) =

∫ u

0

χ(u− x, b)f(x)dx, (4.12)
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µ2(u) =

∫ u

0

χ(u− x, b)h(x)dx, (4.13)

and

L(u) =

∫ b−u
c

0

g(t)µ2(u+ ct)dt. (4.14)

5 Conclusions

In this paper, we have demonstrated that some techniques that are famous can be used to
solve the probability of maximum surplus before failure G(u, b) under classical compound
Poisson risk model where the claim sizes depend on inter-claim times via a Sarmanov copula.
We refer the reader to [8] for details.
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Joint Modelling of Longitudinal and Survival Data

Using Copulas
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Abstract

In this study, joint modeling of two longitudinal and survival sub models have
been considered. We utilize two student-t and Gaussian copulas for joint modeling of
these submodels. The parameter of these sub models under the main joint model is
estimated using maximizing likelihood estimation method. Finally, from a simulation
strategy, the performance of this model is indicated.

Keywords: Copula , Joint Modeling , Longitudinal , Submodel , Survival.

1 Introduction

Assume that a case which we are interested in assessing some of its behaviour during the
random time or during the time until a special event has occurred. All of these data which
were taken is longitudinal and the random specific event time is survival data. The proposed
model for longitudinal data is often linear, linear mixed effect, exponential, logistic model
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and so forth (see [1],[2] and [5]). For survival data, some frailty models can be used such as
gamma, Weibull and Cox frailty models (see [3] and [8]).

It is because each of these data observed in one individual, it is rational to consider some
dependency between these data. Consequently, joint modelling of these sub models is so
important from an aspect for better predicting time to the event of each case based on its
longitudinal measurements. There are many strategies for joint modelling of longitudinal
and survival data (see [1],[3],[2], [5] and [8]).

In the present study, the joint modeling of these data is constructed based on student-t
copula and the model of longitudinal data has been considered arising from Gaussian copulas.
The first choice can be changed according to the researcher’s desire, but for longitudinal
data, we must use the Gaussian copula because of these data considering to following from
a multivariate normal distribution (see [1],[3] and[2]).

In the following, the process of constructing the main likelihood function of the joint
modeling of longitudinal and survival submodels through student-t and Gaussian copulas
are extensively explained in section 2. Section 3 has paid to the simulation study of the
performance of Maximum Likelihood estimators (MLE) and finally, in section 4 we provide
an applicable related example.

2 Theoretical Backgrounds

Suppose there are n subjects in a study, where the ith subject has ni longitudinal
measurements yij at time tij. We consider linear mixed effect model in the form Yi =
XiB+Ziνi+ϵi as a longitudinal sub model whereXi and Zi respectively represents the design
matrix of fixed and random effects for each individuals. In addition, two vectors νi and ϵi
assumed to be mutually independent and follows from N(0, σ2

ν) and N(0, σ2
ϵ ) distributions.

The random effects utilized as a showcase of the unknown effects of each individual on the
repeated measurements that can not be uttered by the observed covariates. It is clear to see
that Yi ∼ N(XiB, σ

2
νZiZ

′
i + σ2

ϵ )

In the case of survival data for simplicity, one can used the two parameters Weibull
frailty sub model as hSi

(si) =
α
λα s

α−1
i . If the censored component has been considered any

positive constant value c, the observed survival data is Ti = max(Si, c). In order to derivation
probability density function (pdf) and cumulative density function (cdf) of Ti, if the cdf of
random variable Si is considered to following absolutely continuous cdf F , then with some
slight mathematical calculation, we can get

FTi
(ti) = FSi

(ti)I(c,∞](ti) + FSi
(c)I[c](ti),

fTi
(ti) = fSi

(ti)I(c,∞)(ti) + FSi
(c)I[c](ti).
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Since FSi
(t) = 1− e−( t

λ
)α and fSi

(t) = α
λα t

α−1e−( t
λ
)α , we have

FTi
(ti) = (1− e−(

ti
λ
)α)I(c,∞](ti) + 1− e−( c

λ
)αI[c](ti),

fTi
(ti) =

α

λα
ti
α−1e−(

ti
λ
)αI(c,∞)(ti) + (1− e−( c

λ
)α)I[c](ti).

Now, we consider joint model of observed data Yi, Ti as a copula of marginal cumulative
distribution function of survival data and copula of joint cdf of observed data in the form of
C1(FSi

(ti), C2(FYi1
(yi1), . . . , FYini

(yini
))). The kind of C2 copula is ni dimensional Gaussian

because of the relation Yi ∼ N(Xiβ, σ
2
νZZ

′+σ2
ϵ Ini×ni

) and for the C1 the elliptical student-t
copula has been considered.

Here, utilize the sklar’s theorem ([4] and [6]) to get the joint cdf of Yi, Ti as

C1(FTi
(ti), FYi1,...,Yini

(yi1, . . . , yini
)) = C1(FTi

(ti), C2(FYi1
(yi1), . . . , FYini

(yini
)))

= C(FTi
(ti), FYi1

(yi1), . . . , FYini
(yini

))

The existence of C as a copula can be easily checked in the dimension ni = 2 and consequently
proved for any dimensions inductively. From another point of view there exist a copula, C∗

say, such that

FTi,Yi1,...,Yini
(ti, yi1, . . . , yini

) = C∗(FTi
(ti), FYi1

(yi1), . . . , FYini
(yini

))

The specification of C∗ does not clearly seem. The choice of C2 is fixed and the choice
of C1 can lead us to finding better alternatives for C∗. Here, we choose student-t copula as
a supersede of C1 and then aim to present how does it work through a simulation study.

The construction of two dimensional student-t copula density function with k > 2 degrees
of freedom is as follow. Firstly suppose that two random variables U1 and U2 following a
two dimensional student-t pdf with k > 2 degrees of freedom such that

fk
U1,U2

(u1, u2) =

√
det(A)

2π
(1 +

(u− µ)′A(u− µ)

k
)−( k

2
+1),

where

u =

[
u1
u2

]
, µ =

[
E(U1)
E(U2)

]
,

[
V ar(U1) Cov(U1, U2)

Cov(U1, U2) V ar(U2)

]
=

k

k − 2
A−1

A =
8k

k − 2

[
2 −1
−1 2

]
, µ =

[
1
2
1
2

]
Here, the two dimensional student-t copula density function with k > 2 degrees of freedom
constructed based on this pdf has been considered.

c1(u,w) =
fk
U1,U2

(t−1
k (u), t−1

k (w))

fk
U1
(t−1

k (u))fk
U2
(t−1

k (w))
,
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where fk
U(.) represent the one dimensional student-t pdf with k degrees of freedom which

defined as

fk
U(u) =

Γ(k+1
2
)

Γ(k
2
)
√
kπ

(1 +
u2

k
)−

k+1
2 ,

and t−1
k (.) denotes the quantile function of a standard univariate student-t distribution with

k degrees of freedom and satisfy in the relation
∫ t−1

k (z)

−∞ fk
U(u)du = z. The joint probability

density function of obsereved data in ith individual is

fTi,Yi1,...,Yini
(ti, yi1, . . . , yini

) = c1(FTi
(ti), C2(FYi1

(yi1), . . . , FYini
(yini

)))

× c2(FYi1
(yi1), . . . , FYini

(yini
))fTi

(ti)

ni∏
j=1

fYij
(yij)

= c1(FTi
(ti), C2(FYi1

(yi1), . . . , FYini
(yini

)))fTi
(ti)

×
√
2πϕ[(Yi −XiB)′Σ(Yi −XiB)]√

(2π)nidet(Σ)

where ϕ and Φ respectively denotes the pdf and cdf of univariate standard normal
distribution.

Finally, as the last part of this section, with the help of the independence of each of the
samples, the maximum likelihood function of observation is constructed as follows

L(α, λ,B, σ2
ν , σ

2
ϵ ) =

n∏
i=1

fTi,Yi1,...,Yini
(ti, yi1, . . . , yini

).

3 Simulation Study

In order to study the numerical behavior of copulas joint modelling of survival and
longitudinal sub models, we ran a series of simulations as follows:

Firstly, consider longitudinal data Yij collected from specific individual i according to
the time tij and kind of treatment xij in that time untill an event has occured. For this
submodel consider linear mixed models as

Yij = β0 + β1tij + β2tijxij + νi + ϵij, i = 1, 2, . . . , n, j = 1, 2, . . . , ni

where the random effects νi were simulated from N(0, σ2
ν) and the random errors ϵij were

generated from N(0, σ2
ϵ ). tij denotes the follow up times of the ith individual were taken

between baseline time 1 and survival time Ti. xij is also represent control group 0 and
treatment group 1 which is generally considered in equal number of each case but their order
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may be change in some application problem. It is straightforward to assess that longitudinal
random follow a normal distribution or for simplicity FYij

(yij) = Φ(
yij−µij√

Σij
), where

µij = β0 + β1tij + β2tijxij,Σni×ni
=


σ2
ν + σ2

ϵ σ2
ν . . . σ2

ν

σ2
ν σ2

ν + σ2
ϵ . . . σ2

ν

. . . .

. . . .

. . . .
σ2
ν + σ2

ϵ σ2
ν . . . σ2

ν + σ2
ϵ


The survival time Ti is assumed to be max(Si, c) where Si were generated from Weibull

frailty model with shape parameter α and scale parameter λ. Finally, the replicate of these
simulation study has been considered m.

Our algorithm of these simulation contains the following steps:

I: Fix longitudinal sub model parameters β0, β1, β2, survival sub model parameters α, λ, c,
number of individuals n, variance of errors σ2

ϵ and variance of random effects σ2
ν

II: Generate n ,n and
∑n

i=1 ni random variables Si ,νi and ϵij from distributions
Weibull(α, λ) ,N(0, σ2

ϵ ) ,N(0, σ2
ν) respectively.

III: Construct x as a vector of size n contains equal number of 0 and 1 sequently.

IV: Construct
∑n

i=1 ni × n matrix Z contain arrays Zji = 1, i = 1, 2, . . . , n,
ni−1 + 1 ≤ i ≤ ni where n0 = 0 and 0 otherwise.

V: Put tij = 1, 2, . . . , [Ti] where Ti = max(Si, c) and notation [.] present greatest integer
value less or equal to the containing number.

VI: Construct
∑n

i=1 ni × 3 matrix X contain 3 columns, the first is equal to 1∑n
i=1 ni×1, the

second is equal to tij and the last is the form of xij × tij.

VII: Constitute observed data matrix Y as Y = XB + Zν + ϵ.

VIII: Consider lakilihood function as a function of α, λ, b0, b1, b2, σ2
ν , σ

2
ϵ and calculate MLE

of these parameters

IX: Repeat steps
(
II
)
-
(
VIII

)
m times for deriving mean squared errors (MSE), mean

absolute errors (MAE) and bias (Bias) of these estimations.

In continued, we provide some tables for a deep grasp of the performance of this joint
modeling.
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c = 19, df = 5, n = 25, m = 1000
. Bias MSE MAE
α = 3 0.547 1.513 0.952
λ = 26 -0.637 1.907 1.193
β0 = 0.9 -0.128 0.933 0.769
β1 = 0.05 0.098 0.370 0.268
β2 = 0.8 -0.176 0.441 0.357
σ2
ν = 0.05 0.210 0.247 0.163
σ2
ϵ = 0.01 -0.111 0.912 0.640

c = 19, df = 5, n = 50, m = 500
. Bias MSE MAE
α = 3 0.563 1.650 0.976
λ = 26 -0.788 1.877 1.088
β0 = 0.9 -0.169 0.969 0.898
β1 = 0.05 0.067 0.299 0.257
β2 = 0.8 -0.163 0.416 0.330
σ2
ν = 0.05 0.180 0.137 0.120
σ2
ϵ = 0.01 -0.150 0.842 0.577

c = 19, df = 5, n = 100, m = 250
. Bias MSE MAE
α = 3 0.520 1.465 0.973
λ = 26 -0.624 1.682 0.990
β0 = 0.9 -0.154 0.993 0.748
β1 = 0.05 0.076 0.274 0.219
β2 = 0.8 -0.141 0.359 0.317
σ2
ν = 0.05 0.147 0.116 0.109
σ2
ϵ = 0.01 -0.121 0.794 0.548

It is straightforward to see that even we do not use shared frailty models for each case, the
performance of estimators based on this joint model not bad at all. In addition, it can be
mentioned that these results for n = 100, m = 500 and n = 100, m = 1000 is much better
than the results given here.

The main point is that for degrees of freedom less than 10, n > 50 and m > 100 the
results look good.

4 Applications

In this section, we aim to predict champion of half season (2017− 2018) of England premier
league. The survival time is that at least one team reach 57 points and must be at least 19
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games. Control and treatment group in this situation interpreted as each team gaming in
home 1 or away 0. According to the history of premier league all of top six teams have been
considered and based on their previous season results, can be immediately understood that
the survival time of Manchester United, Arsenal, Chelsea, Manchester City, Liverpool, and
Tottenham Hotspur is 28, 34, 33, 20, 28 and 29 respectively. The number of scored goals
and place of each game are provided in the following table.
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2017− 2018
. Arsenal Manchester

United
Manchester
City

Liverpool Tottenham
Hotspur

Chelsea

1 1-4 1-4 0-2 0-3 0-2 1-2
2 0-0 0-4 1-1 1-1 1-1 0-2
3 0-0 1-2 0-2 1-4 1-1 1-2
4 1-3 0-2 1-5 0-0 0-3 0-2
5 0-0 1-4 0-6 1-1 1-0 1-0
6 1-2 0-1 1-5 0-3 0-3 0-4
7 1-2 1-4 0-1 0-1 0-4 1-0
8 0-1 0-0 1-7 1-0 1-1 0-1
9 0-5 0-1 1-3 0-1 1-4 1-4
10 1-2 1-1 0-3 1-3 0-0 0-1
11 0-1 0-0 1-3 0-4 1-1 1-1
12 1-2 1-4 0-2 1-3 0-0 0-4
13 0-1 1-1 0-2 1-1 1-1 0-1
14 1-5 0-4 1-2 0-3 0-1 1-1
15 1-1 0-3 1-2 0-5 0-1 1-3
16 0-1 1-1 0-2 1-1 1-5 0-0
17 0-0 1-0 0-4 1-0 1-2 0-3
18 1-1 0-2 1-4 0-4 0-1 1-1
19 1-3 0-2 1-4 0-3 0-3 0-0
20 0-3 1-2

0-1
1-5 1-5 1-2

21 0-1 1-0 - 1-2 0-2 1-5
22 1-2 0-2 - 0-2 1-1 0-2
23 0-1 1-3 - 1-4 1-4 1-0
24 1-4 0-1 - 0-0 0-1 0-4
25 0-1 0-0 - 0-3 1-2 1-0
26 1-5 1-2 - 1-2 0-2 0-1
27 0-0 0-0 - 0-2 1-1 1-3
28 1-0

1-2
-

1-4
0-1 0-1

29 0-1 - - -
1-2

0-0

30 1-3 - - - - 1-2
31 1-3 - - - - 1-1
32 1-3 - - - - 1-1
33 0-1 - - - -

0-3
34

1-4
- - - - -
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According to these data, the MLE of our parameters is α̂ = 6.896, λ̂ = 29.321, b̂0 =
1.041, b̂1 = 0.048, b̂2 = 0.079, σ̂ν = 0.141, σ̂ϵ = 0.052. Here with respect to these estimators,
the number of scored goals of these six teams considering the position of the start game,
until reaching 57 points in the current season are predicted as follow
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2018− 2019
. Arsenal

(Home)
Manchester
United
(Home)

Manchester
City
(Away)

Liverpool
(Home)

Tottenham
Hotspur
(Away)

Chelsea
(Away)

1 1 2 2 3 2 1
2 2 2 2 2 2 3
3 3 1 1 1 3 2
4 2 1 2 2 1 2
5 2 2 3 1 0 3
6 3 1 1 3 2 0
7 2 2 2 2 1 2
8 1 3 0 0 1 3
9 3 2 3 1 2 2
10 2 2 1 3 1 3
11 2 1 2 2 3 1
12 1 1 3 2 2 0
13 1 0 1 3 3 1
14 4 0 3 2 2 1
15 2 2 2 3 3 1
16 2 4 0 1 3 2
17 1 1 2 2 1 2
18 0 2 4 4 1 3
19 1 2 3 2 3 2
20 2 3 2 1 2 1
21 3 0 2

2
1 0

22 1 1 1 - 0 2
23 0 1 0 - 2 2
24 4 2

3
- 1 3

25 2 2 - - 0 1
26 3 0 - - 2 0
27 0 1 - - 3 1
28 1 4 - -

1
2

29 1 3 - - -
1

30
3

1 - - - -

31 - 1 - - - -
32 - 1 - - - -
33 - 2 - - - -
34 -

3
- - - -
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In this paper, we shall propose a general method of generating discrete bivariate
distributions using copulas. The advantage of our method is that, contrary to the
standard methods, we do not need to have the joint distribution of the base variables,
we need the marginals only. In particular, we shall concentrate on generating a new
discrete bivariate exponentiated extended Weibull (DBEEW) by a Cuardas-Auge
copula. An advantage of this family of copulas is that they are exchangeable and,
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1 Introduction

Due to the limited number of flexible discrete distributions, in recent years, several methods
have been proposed to construct new discrete distributions. One of the most important
methods is the discretization of known continuous distributions. Let h(y1, y2) and H(y1, y2)
be the joint pdf and cdf of a given bivariate contiuous distribution on (0,∞)2. Then, we can
generate a new discrete bivariate distribution by the following 2 methods

P (Y1 = y1, Y2 = y2) =
h(y1, y2)∑∞

i=1

∑∞
j=1 h(i, j)

, y1, y2 = 1, 2, ..., (1.1)

or

P (Y1 = y1, Y2 = y2) =H(y1 + 1, y2 + 1)−H(y1 + 1, y2)−H(y1, y2 + 1)

+H(y1, y2), y1, y2 = 0, 1, ..., (1.2)

Clearly, relations (1.1) and (1.2) provide new discrete bivariate distributions provided that
the joint continuous distribution of Y1 and Y2 is known. Motivated by (1.2), we can develope
a new method of generating discrete bivariate distribution using copula functions having
only the maginal continuous distributions of Y1 and Y2.
To consider the type of the dependence structure between the variables, copulas play
important roles in probability theory and statistics. Recall that copulas are probability
functions which connect multivariate distributions to their marginal distributions. Sklar [7]
proved that there is a unique copula function C connecting continious marginal distributions
G1 and G2 to their joint continuous bivariate distributions H as

C(G1(y1), G2(y2)) = H(y1, y2). (1.3)

Now, inserting (1.3) into (1.2) we obtain new family of discrete bivariate distributions
generated by copulas as

P (Y1 = y1, Y2 = y2) =C
(
GY1(y1 + 1), GY2(y2 + 1)

)
− C

(
GY1(y1 + 1), GY2(y2)

)
,

− C
(
GY1(y1), GY2(y2 + 1)

)
+ C

(
GY1(y1), GY2(y2)

)
. (1.4)

It is obvious that a great advantage of this method is that we need not have the parent
joint distribution and given two marginals we can produce a large class of bivariate discrete
distributions by usin different copulas C in (1.4). Some known parametric copulas are
the Farlie-Gumbel-Morgenstern (FGM) copulas, Normal copulas, the Marshall and Olkin
copulas, Cuadras-Auge copulas, etc.
The Cuardas-Auge family of copulas was introduced based on the family of bivariate
distributions proposed by Cuadras and Auge [2] as

Cθ(u, v) = min{u, v}.max{u, v}1−θ (1.5)
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where 0 ≤ θ ≤ 1 and 0 ≤ u, v ≤ 1. The parameter θ measures the degree of dependence,
where θ = 0 corresponds to independence and θ = 1 to complete comonotonicity. Moreover,
θ plays the role of the parameter of upper-tail dependence of Cθ(u, v). The Cuardas-Auge
copulas is exchangeable, i.e. symmetric in its marginals. For this reason, the Cuardas-Auge
copulas are largely used in a variety of modelings for exchangeable random vectors. Thus,
considering the dependency structure between Y1 and Y2, we can choose the Cuardas-Auge
copula in (1.4) to produce our desired joint distribution. By inserting the Cuardas-Auge
copulas (1.5) into Eq. (1.4) for any marginal univariate continious cdf G1(.) = G2(.) = G(.)
a new large family of discrete bivariate distribution can be drived as

fY1,Y2(y1, y2) =



[(
G(y1 + 1)

)γ − (G(y1)
)γ][

G(y2 + 1)−G(y2)
]
, if y1 > y2,[(

G(y2 + 1)
)γ − (G(y2)

)γ][
G(y1 + 1)−G(y1)

]
, if y2 > y1,

(
G(y + 1)

)γ[
G(y + 1)−G(y)

]
−G(y)

[(
G(y + 1)

)γ − (G(y)
)γ]

if y1 = y2 = y

(1.6)
where y1, y2 = 0, 1, ... and γ = 1− θ.
The exponentiated extended Weibull (EEW) distribution is a popular continuous family of
distributions whose cumulative distribution function is given by

GEEW (x;α, λ, ξ) =
(
1− e−λH(x;ξ)

)α
, x > 0, α > 0, λ > 0, (1.7)

where H(x; ξ) is a non-negative increasing function depending on parameter vector ξ > 0.
Most bivariate distributions with EEW marginals are all defined on continuous scales. But,
in real cases, we usually encounter situations which can not measure the life length of a
device on a continuous scales. Therefore, in this paper we intend to construct new discrete
bivariate distributions by using EEW distribution. Our main aim now is to propose a new
discrete bivariate exponentiated extended Weibull (DBEEW) distribution by using EEW
distribution as the indentical parent cdf G in Eq. (1.6).

2 The DBEEW Distribution And Its Basic Properties

Now by utilizing the exponentiated extended Weibull (EEW) cdf (1.7) in Eq. (1.6) we shall
arrive at a new discrete bivariate exponentiated extended Weibull (DBEEW) distribution
with pmf

fY1,Y2(y1, y2) =


P1(y1, y2), if y1 > y2,

P2(y1, y2), if y2 > y1,

P0(y1, y2) if y1 = y2 = y

(2.1)
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where

P1(y1, y2) =
[(
1− pH(y1+1;ξ)

)αγ − (1− pH(y1;ξ)
)αγ][(

1− pH(y2+1;ξ)
)α −

(
1− pH(y2;ξ)

)α]
,

P2(y1, y2) =
[(
1− pH(y2+1;ξ)

)αγ − (1− pH(y2;ξ)
)αγ][(

1− pH(y1+1;ξ)
)α −

(
1− pH(y1;ξ)

)α]
,

P0(y1, y2) =
(
1− pH(y+1;ξ)

)αγ[(
1− pH(y+1;ξ)

)α −
(
1− pH(y;ξ)

)α]
−
(
1− pH(y;ξ)

)α[(
1− pH(y+1;ξ)

)αγ − (1− pH(y;ξ)
)αγ]

,

y1, y2 ∈ N0 = {0, 1, ...}, 0 < p = e−λ < 1, 0 ≤ γ ≤ 1 and α > 0. We denote such a
distribution by DBEEW (α, p, γ, ξ). It is observed that the corresponding joint cdf of a
(Y1, Y2) ∼ DBEEW (α, p, γ, ξ) is given by

FY1,Y2(y1, y2) =


(
1− pH(y1;ξ)

)αγ(
1− pH(y2;ξ)

)αγ(
1− pH(min{y1,y2};ξ)

)α(1−γ)
, y1, y2 = 0, 1, ...,

0, o.w.
(2.2)

Survival function of a DBEEW (α, p, γ, ξ) random vector (Y1, Y2) can be obtained from the
following equation

F̄Y1,Y2(y1, y2) = 1− FY1(y1)− FY2(y2) + FY1,Y2(y1, y2). (2.3)

Also, using the pmf (2.1) and survival function (2.3), one can obtain the bivariate hazard
rate function as

r(y1, y2) =
fY1,Y2(y1, y2)

F̄Y1,Y2(y1, y2)
(2.4)

where y1, y2 ∈ N0 = {0, 1, 2, ...}. Now we obtain the joint probability generating function
(pgf) of a DBEEW (α, p, γ, ξ) distribution as follows

GY1,Y2(z1, z2) = E(zY1
1 zY2

2 ) =

∞∑
y2=0

∞∑
y1=0

zy11 zy22 P (Y1 = y1, Y2 = y2),

=

∞∑
y2=0

∞∑
y1=y2+1

∞∑
i=1

∞∑
j=1

zy11 zy22 (−1)i+j

(
αγ

i

)(
α

j

)
(piH(y1+1;ξ) − piH(y1;ξ))(pjH(y2+1;ξ) − pjH(y2;ξ)),

+

∞∑
y1=0

∞∑
y2=y1+1

∞∑
i=1

∞∑
j=1

zy11 zy22 (−1)i+j

(
α

i

)(
αγ

j

)
(piH(y1+1;ξ) − piH(y1;ξ))(pjH(y2+1;ξ) − pjH(y2;ξ)),

+

∞∑
y=0

∞∑
i=1

∞∑
j=1

zy1z
y
2(−1)i+j

(
αγ

i

)(
α

j

)
piH(y+1;ξ)(pjH(y+1;ξ) − pjH(y;ξ)),

−
∞∑
y=0

∞∑
i=1

∞∑
j=1

zy1z
y
2(−1)i+j

(
α

i

)(
αγ

j

)
piH(y;ξ)(pjH(y+1;ξ) − pjH(y;ξ)), (2.5)
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where |z1| < 1 and |z2| < 1. The marginal distributions of Y1 and Y2 can also be determined
from the joint pgf (2.5) at z1 = 1 and z2 = 1, respectively.

Additionally, in the following theorem we shall obtain the conditional pmf, cdf and
conditional expected value of the distribution without proof.

Theorem 2.1. Let (Y1, Y2) ∼ DBEEW (α, p, γ, ξ), then for all non-negative integer values
of y1 and y2, we have

(a) the conditional pmf of (Y2|Y1),

fY2|Y1=y1(y2) =



P1(y1,y2)

(1−pH(y1+1,ξ))α−(1−pH(y1,ξ))α
, if y1 > y2,

P2(y1,y2)

(1−pH(y1+1,ξ))α−(1−pH(y1,ξ))α
, if y2 > y1,

P0(y1,y2)

(1−pH(y+1,ξ))α−(1−pH(y,ξ))α
if y1 = y2 = y

(2.6)

(b) the conditional cdf of (Y2|Y1 ≤ y1) is given by

FY2|Y1≤y1(y2) =
P (Y2 ≤ y2, Y1 ≤ y1)

P (Y1 ≤ y1)
=


(1− pH(y1,ξ))−α(1−γ)(1− pH(y2,ξ))α, if y1 > y2,

(1− pH(y2,ξ))αγ , if y2 > y1,

(1− pH(y,ξ))αγ if y1 = y2 = y
(2.7)

(c) the conditional cdf of (Y2|Y1 = y1) is given by

FY2|Y1=y1(y2) =
P (Y1 = y1, Y2 ≤ y2)

P (Y1 = y1)

=



(
1−pH(y2+1;ξ)

)α[(
1−pH(y1+1;ξ)

)αγ
−
(
1−pH(y1;ξ)

)αγ
]

[(
1−pH(y1+1;ξ)

)α
−
(
1−pH(y1;ξ)

)α] , if y1 > y2,

(1− pH(y2+1,ξ))αγ , if y2 > y1,(
1−pH(y+1;ξ)

)αγ
[(

1−pH(y+1;ξ)
)α

−
(
1−pH(y;ξ)

)α][(
1−pH(y1+1;ξ)

)α
−
(
1−pH(y1;ξ)

)α] if y1 = y2 = y

(2.8)
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(d) the conditional expectation of (Y2|Y1 = y1) is given by

E(Y2|Y1 = y1) =

∑∞
j=0

∑y1−1
y2=1 y2

(
α
j

)
(−1)j

[(
1− pH(y1+1;ξ)

)αγ − (1− pH(y1;ξ)
)αγ][

pjH(y2+1;ξ) − pjH(y2;ξ)
]

(1− pH(y1+1,ξ))α − (1− pH(y1,ξ))α

−
y1
(
1− pH(y1;ξ)

)α[(
1− pH(y1+1;ξ)

)αγ − (1− pH(y1;ξ)
)αγ]

(1− pH(y1+1,ξ))α − (1− pH(y1,ξ))α

+

∞∑
j=0

∞∑
y2=y1+1

y2

(
αγ

j

)
(−1)j

[
pjH(y2+1;ξ) − pjH(y2;ξ)

]
+ y1

(
1− pH(y1+1;ξ)

)αγ
(2.9)

Positively quadrant dependent and left-tail decreasing are two important properties in
reliability topics. Random variables U1 and U2 are positively quadrant dependent if

FU1,U2(u1, u2) ≥ FU1(u1)FU2(u2) (2.10)

for all u1 and u2 and U2 is left- tail decreasing in U1, if and only if, FU2|U1≤u1(u2) is a
non-increasing function of u1 for any u2. Therefore, based on these two definitions we have
the following theorems.

Theorem 2.2. Suppose (Y1, Y2) ∼ DBEEW (α, p, γ, ξ). Then, Y1 and Y2 are positive
quadrant dependen.

Remark 2.3. Since Y1 and Y2 are positive quadrant dependen, then for any increasing
functions H1(.) and H2(.) we have Cov(H1(Y1), H2(Y2)) ≥ 0, (see [5]).

Theorem 2.4. Suppose (Y1, Y2) ∼ DBEEW (α, p, γ, ξ). Then, Y2 is left- tail decreasing in
Y1.

Some other more relibility measurs are the conditional hazard rate function, the hazard
gradient vector and the Clayton-Oakes measure which we shall consider for BBEEW
distribution as folllows. The conditional hazard rate function of (Y2|Y1 = y1) is given as
the following theorem.

Theorem 2.5. Let (Y1, Y2) ∼ DBEEW (α, p, γ, ξ). Then
(a) for |y1 − y2| ≥ 1 we have

rY2|Y1
(y2|y1) =


r1(y2|y1), if y1 − y2 ≥ 1,

r2(y2|y1), if y1 − y2 ≤ −1,
(2.11)

where

r1(y2|y1) =
P1(y1, y2)

[(1− pH(y1+1,ξ))α − (1− pH(y1,ξ))α]− (1− pH(y2+1,ξ))α[(1− pH(y1+1,ξ))αγ − (1− pH(y1,ξ))αγ ]
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and

r2(y2|y1) =
P2(y1, y2)

[1− (1− pH(y2+1,ξ))αγ ][(1− pH(y1+1,ξ))α − (1− pH(y1,ξ))α]

(b) for |y1 − y2| < 1 we have

rY2|Y1
(y2|y1) =

P0(y1, y2)∑∞
i=y1+1 P2(Y1 = y1, Y2 = i)

=
P0(y1, y1)

[1− (1− pH(y1+1,ξ))αγ ][(1− pH(y1+1,ξ))α − (1− pH(y1,ξ))α]
(2.12)

Similarly, we can obtain the conditional hazard rate function of (Y1|Y2 = y2) which is
useful to constract the hazard gradient which was proposed by Johnson and Kots (1975).
They defined the hazard gradient as the vector

R(y1, y2) = (r1(y1, y2), r2(y1, y2))
T (2.13)

where r1(y1, y1) is the hazard rate of the conditional distribution of Y1 given
(Y2 > y2) and r2(y1, y1) is the hazard rate of the conditional distribution of Y2 given (Y1 > y1).
Thus, using the conditional hazard rate functions and survival function (2.3) we can define
the members of the hazard gradient of DBEEW distribution as

r1(y1, y2) = rY1|Y2>y2(y1) =
P (Y1 = y1, Y2 > y2)

F̄Y1,Y2(y1, y2)
=

r(y1, y2)

rY2|Y1
(y2|y1)

(2.14)

and

r2(y1, y2) = rY2|Y1>y1(y2) =
P (Y1 > y1, Y2 = y2)

F̄Y1,Y2(y1, y2)
=

r(y1, y2)

rY1|Y2
(y1|y2)

, (2.15)

respectively.
An association measure in reliability topics which was proposed by Oakes [6] and expanded
by Clayton [1], is the Clayton−Oakes measure. This measure for DBEEW distribution is
obtained by

θ(x, y) =
rY2|Y1

(y2|y1)
r1(y1, y2)

(2.16)

which can be simplified using Eq. (2.14) as

θ(x, y) =
r2Y2|Y1

(y2|y1)
r(y1, y2)

. (2.17)

Now, here we consider several other important properties of DBEEW (α, p, γ, ξ) family in
the following theorems.

Theorem 2.6. Let (Y1, Y2) ∼ DBEEW (α, p, γ, ξ). Then
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(a) Y(1) = min{Y1, Y2} has the cumulative distribution function

FY(1)
(y) =

(
1− pH([y];ξ)

)α(
2−

(
1− pH([y];ξ)

)αγ)
, (2.18)

(b) Y(2) = max(Y1, Y2) has the cumulative distribution function

FY(2)
(y) =

(
1− pH([y];ξ)

)α(1+γ)
, (2.19)

(c) Y2 − Y1 has the probability mass function

fY2−Y1(t) =


∑∞

y1=0 P2(y1, y1 + t), t > 0,∑∞
y1=0 P1(y1, y1 + t), t < 0,∑∞
y1=0 P0(y1, y1), t = 0

(2.20)

(d)
∣∣Y2 − Y1

∣∣ has the probability mass function

f∣∣Y2−Y1

∣∣(t) = { ∑∞
y1=0 P2(y1, y1 + t) +

∑∞
y1=1 P1(y1, y1 − t), t > 0,∑∞

y1=0 P0(y1, y1), t = 0
(2.21)

Theorem 2.7. Let (Yj1, Yj2) ∼ DBEEW (αj, p, γ, ξ), for j = 0, 1, 2, ..., n, be independent
random vectors and define X1 = max(Y11, Y21, ..., Yn1) and X2 = max(Y12, Y22, ..., Yn2).
Then, (X1, X2) ∼ DBEEW (

∑n
j=1 αj, p, γ, ξ)

Theorem 2.8. The stress-strenght probability of our proposed model (Y1, Y2) ∼
DBEEW (α, p, γ, ξ) is given by

P (Y1 < Y2) =

∞∑
i=0

(
1− pH(i+1;ξ)

)α[(
1− pH(i+2;ξ)

)αγ − (1− pH(i+1;ξ)
)αγ]

, (2.22)

A discrete bivariate random vector (U1, U2) with pdf f(·, ·) is said to have a TP2 property
if

f(u11, u21)f(u12, u22)

f(u12, u21)f(u11, u22)
≥ 1 (2.23)

for all u11 < u12 and u21 < u22. Here we show that DBEEW distribution does not have
TP2 property. To see this, consider a discrete bivariate generalized exponential (BDGE)
distribution which is a special case of DBEEW distribution. Then, choosing x11 = 2 <
x21 = 4 < x12 = 6 < x22 = 8 and also α1 = 5, α2 = 1, α3 = 3 and p = 0.9, (24) yields

f(x11, x21)f(x12, x22)

f(x12, x21)f(x11, x22)
= 0.9143 < 1.

Thus, BDGE and, consequently, the class of DBEEW distributions do not satisfy the TP2

property in general.

Remark 2.9. The above observation shows that Nekoukhou and Kundu,s [4] claim that BDGE
distributions are TP2 is not correct.
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3 Some special cases

Three interesting sub-models of DBEEW class of distributions are discrete bivariate
generalized exponential (DBGE) distribution (H(y; ξ) = y), discrete bivariate exponentiated
Weibull (DBEW) distribution (H(x; ξ) = xβ) and discrete bivariate generalized Gompertz
(DBGG) distribution (H(x; ξ) = β−1(eβx − 1)).

4 Application

We fit our three submodels of the DBEEW distribution and bivariate Poisson (BP )
distribution to a real data set corresponding to Italian Series A football match score data
between ACF Firontina and Juventus during 1996 to 2011, and conclude that all three and
four parameters submodels provide better fits compared to bivariate Poisson distribution.
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This paper is concerned with the analysis of correlated responses in insurance
data. A Gaussian copula-based regression model is proposed that accounts for
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entails specifying underlying latent variables for the responses to indicate the latent
mechanisms which generate the count variables. Full likelihood-based inference
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1 Introduction

2 One of the essential parts of insurance pricing is modeling insurance claim counts. Typically
a comprehensive record of the claim history of their customers is held by insurance companies
and they have access to an additional set of personal information. The number of claims
reveals the riskiness of the insured. Thus by examining the relation between claim counts
and policyholders characteristics, the insurer classifies the policyholders and determines the
fair premium according to their risk level. When various types of coverage are tied into one
single policy it is common for an insurer to observe claim counts of multiple types from a
policyholder. Our goal is to develop bivariate count regression models that accommodate
dependency between automobile and third party insurance claims. On the other hand, The
separate analysis cannot assess the effect of explanatory variables on both responses. Also,
separate analysis gives biased estimates of the parameters, so researchers need to consider a
method in which these responses can be modelled jointly.
For analyzing and modeling the number of damages, counting models such as Poisson
regression models and negative binomial regressions with cross-sectional responses were used
by [9]. [14] introduced a method to estimate correlated discrete random variables with
known univariate distribution functions up to some parameters. Various studies have been
carried out on the calculation of premiums using multi-dimensional Poisson distributions
and negative binomial distributions by [1].

Another method for analyziing correlated count data involves the use of Copulas. This
strategy involves the use of diffrenet Copula,for example Gaussian Copula and t Copula
([12], [4] ,and [13]).

[2] calculated the Gaussian Copula From the multivariate standard normal distribution.
[5], [10],and [8] discussed Couplas. [6] extended Copula to the case where some of the
marginals are a mixture of discrete and continuous components. Copulas is useful where
the relevent joint distribution is either not available or difficult to specify but marginal
distributions can be specified with confidence.

[7] presented a method for analyzing multivariate count data by Copula modeling.
Particularly, he presented techniques for estimating marginal likelihoods and bayes factores
in Copula model. [11] considered two different methods of modeling multivariate claim counts
using copulas. The first model worked with the discrete count data directly using a mixture
of max-id copulas that allows for flexible pair-wise association, tail, and global dependence.
The second one employed elliptical copulas to join continuous data while preserving the
dependence structure of the original counts.

In this paper, we present new models for bivarite count responses by using Guassian
Copula. So far, the researchers did not study models for correlated count responses based
on latent variables . Now, here, we present Gussian Copula joint models.

This paper is organized as follows. In Section 2, Gaussian Copula is discussed. In Section
3,We introduce the Gaussian Copula joint model for correlated count responses. Section 4
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focuses on insurance claims frequancy data set, simulation studies are used to assure the
true model. Finally, in Section 5, the paper discuss with some remarks.

2 Gaussian Copula

[12] introduced a Copula as a function that presents the joint distribution in terms of its
marginal. He showed that if H is a bivariate distribution function with margins F and G
then there is a joint function such that:

H(x, y) = C(F (x), G(y)).

In the bivariate case, the approach relates an arbitrary joint distribution FX,Y to its
corresponding univariate marginal distribution FX and FY via a copula C as

FX,Y (x, y) = C(u, v; ρ),

where u and v are respective realization of probability integral transformations U = FX(X) ∼
uniform[0, 1], V = FY (Y ) ∼ uniform[0, 1] and ρ is a dependence parameter measuring
dependence between marginals FX and FY .
Gaussian Copulas are an important family which has been used in a variety of applications.
The bivariate Gaussian Copula is defined with the standard bivariate normal CDF and has
the following form:

Cρ(u1, u2; ρ) = Φ2(Φ
−1(u1),Φ

−1(u2)|ρ)
for u1, u2 ∈ [0, 1], where Φ(.) is the standard normal CDF and Φ2(., .; ρ) is the standard
bivariate normal CDF, with correlation ρ.
If we assume that the vector variables X have a multivariate Gaussian distribution with
correlation matrix R then the copula of X may be represented by

CGa
R (u1, u2, . . . , um) = ΦR(Φ

−1(u1),Φ
−1(u2), . . . ,Φ

−1(um)),

where ΦR denotes the joint distribution function of a standard d-dimensional normal vector
with correlation matrixR, and Φ(.) is the distribution function of univariate standard normal.

3 Guassian Copula joint Model

Let Yij indicate count responses (the number of automobile and third party claims) for the
ith individual in the jth count for i = 1, . . . , nandj = 1, 2, also let power series distribution
be the general form of the probability mass function (pmf) of a random variable (Yi) with
parameter θi which can be given as:

P (Yi = k) =
a(ki)θ

k
i

g(θt)
, y = 0, 1, . . . , θi > 0, t = 1, . . . , T
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where a(ki) > 0 and g(θi) =
∞∑
n=0

a(ki)θ
k
i is the normalizing constant. The Poisson, binomial

and negative binomial belong to this class. Moreover, we suppose that Yij takes its values
accoring to the latent variable Y ∗

ij as:

Yij = kj I(γj,kj−1 < Y ∗
ij
< γj,kj), i = 1, ...., n, j = 1, 2

where γj,kj determine the discretization of the data, and γj,−1 = −∞ < γj,0 < . . . < γj,q−1 <
γj,q = ∞ are cut-points parameters. The latent variable responses (Severity of damages) is
modeled as:

Yij ∼ PS(θij) , q(θij) = X
(1)′

ij αj,

Y ∗
it = X

(2)′

ij βj + εij,

where X
(1)
ij and X

(2)
ij are vectors of the covariates for the ith individual in the jth count

and βj and αj are vectors of the corresponding unknown regression coefficients. Finally
ϵij ∼ N(0, σ2

1) fo ri = 1, . . . n.
The Gaussian Copula joint modelling is defined as:{

Yij ∼ PS(θij) log θij = X
(1)
ij αj, Y

∗
ij = X

(2)′

ij βj + εij,
γj, kj = Φ−1(P (Yij = kj|θij)), forj = 1, 2

(3.1)

where (ϵi1, ϵi2) ∼ C2 and C2 is the Gaussian Copula which for u, v ∈ [0, 1] is defined as:

C2 = Φ2
ρ(Φ

−1(u),Φ−1(v)|ρ),

and

P (Yij = k|θij) =

γkt∫
γkt−1

Φ(z|0, 1, θij)dz =Φ(ηkt−1)− Φ(ηkt),

and,

v =
Y ∗
ij−µ(Y ∗

ij |b
(1)
i )

var(Y ∗
ij)

, µ(Y ∗
ij) = x

′(1)
ij βj, and var(Y ∗

ij) = σ2.

The likelihood function for the model is as:

L(ξ) =
n∏

i=1

P (Yi1 = k1, Yi2 = k2),

where ξ = (αj, βj, ρ)
′
, by using Gaussian Copula we have:

P (Yi1 = k1, Yi2 = k2) = P (γ1,k−1 ≤ Y ∗
i1 ≤ γ1,k, γ2,k−1 ≤ Y ∗

i2 ≤ γ2,k)
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=FY ∗
i1,Y

∗
i2
(γ1,k, γ2,k)− FY ∗

i1,Y
∗
i2
(γ1,k, γ2,k−1)− FY ∗

i1,Y
∗
i2
(γ1,k−1, γ2,k) + FY ∗

i1,Y
∗
i2
(γ1,k−1, γ2,k−1)

where
FY ∗

i1,Y
∗
i2
(y∗i1, y

∗
i2) = Φ2(Φ

−1{FY ∗
i1
(y∗i1),Φ

−1{Fy∗i2
(y∗i2)|ρ),

FY i1 is the marginal distribution of yit, and ηkj = Φ−1(P (Yij = kj|θij).
The general methods of estimation for the parameters are based on the full likelihood. In

this method, the likelihood approach for comutational implementaion needs the log-likelihood
which can be maximized by function ′′nlminb′′ in software R. This function may be used
for minimization of a function of parameters. For maximization of a likelihood function
one may minimize minus log likelihood function.The function ′′nlminb′′ uses optimization
method of port routine which is given in ′′http://netlib.bell-labs.com/cm/cs/cstr/153.pdf′′.
The function ′′nlminb′′ uses a sequential quadratic programming (SQP) method to minimize
the requested function. The details of this method can be found in [3]. The observed Hessian
matrix may be obtained by nlminb function or may be provided by function ′′fdHess′′.

4 An Insurance Claims Frequency Data Set

To demonstrate the use of the our model, an automobil and third party insurance resposes, a
simulation data set is generated. In this data set, claims frequancy and explanatory variables,
are obtianed. This simulation study is preformed to evaluate the performance of the model.
The simulation study is considered count variables (the number of automobile and third
party claims) Yj(j = 1, 2) to have the power series distribution. The distributions of claims
counts Yj are considered as Poisson distributions. They are generated by their probability
functions. The vector of cut points is chosen as γj, k = Φ−1(F (Yij = kt|λij)) and we consider

log(λij) = α
(0)
j X

(2)′

ij α1
j

where X
(2)
ij are generated from normal distributions. The initial value for the vector of

parameters is chosen as (α
(0)
1 , α

(0)
2 , α

(1)
1 , α

(1)
2 ) = (0, 0, 1, 1).

Also

Yij =


0 Y ∗

ij ≤ γj,0
1 γj,0 < Y ∗

ij ≤ γj,1
> 2 γj,1 < Y ∗

ij

where (Severity of damages) Y ∗
ij have a normal distribution with mean X2′

ij βj and variance
σ∗2. Initial values for vector of parameters are chosen as (β1, β2, σ

∗2) = (1, 1, 1). Also, X2
ijs

are generated from gamma distributions.
We consider sample size n to be 50, 100, and 1000. In order to ensure the results of the
numerical algorithm, the model is fitted by ”nlminb” package from software R. Table 1 shows
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the result of the simulation study for the model. The parameter estimates are close to the
true values of the parameters. Also, the bigger the sample size the smaller the standard error
(SE), and as figure 1 shows, the bigger the sample size the smaller mean square error (MSE)
which shows the consistency property of our maximum likelihood estimators (MLEs).

Table I. Results of the simulation study for the model.
n=50 n=100 n=1000

Parameter True value Est. S.E. Est. S.E. Est. S.E.

α
(0)
1 0.000 0.259 0.264 0.187 0.185 0.012 0.057

α
(1)
1 1.000 0.700 0.207 1.117 0.198 0.937 0.049

α
(0)
2 0.000 0.282 0.212 -0.057 0.191 -0.014 0.063

α
(1)
2 1.000 0.942 0.274 1.193 0.207 0.969 0.052
β1 1.000 0.920 0.112 0.928 0.072 1.002 0.022
β2 1.000 0.926 0.0878 0.926 0.080 1.007 0.024
ρ 0.900 0.865 0.143 0.868 0.136 0.911 0.022

Figure 1: MSE for the model
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5 Discussion

Accurate modeling of the correlated claim count responses is one of the essential steps in
calculating policy rates. Motivated by the correlated claim count responses of the insurance
data set, in this article, we considered alternative approaches to construct correlated count
regression models based on Gaussian Copula function. dependency between automobile
and third party insurance claims were calculated. In the future studied, we can consider
zero-inflated models in the presence of missing data.
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1 Introduction

The copula approach is a useful method for deriving joint distributions given the marginal
distributions. The term copula was introduced by Sklar (1959). Hoeffding established best
possible bounds for these functions and studied measures of dependence that are invariant
under strictly increasing transformations. Since considering linear correlation in many
applications is restricted, other forms of dependence are considered by Embrechts et al.
(2003) and Mc Neil et al. (2005). Relationships of copula to the other works have been
described in Nelsen (2006). In Biau and Wegkamp (2005) the problem of estimation of copula
densities, given a copula density as starting point is discussed. Kallenberg (2008) introduced
one approach based on exponential families. Kallenberg (2009) focused on estimating the
(unknown) copula density by selection method. In this method, the modelling step consists
of an intermediate approach between a parametric family and a non-parametric approach.
This is done by considering a sequence of parametric copula models, to yield a sequence of
closer and closer approximations to the true copula density. The starting point is a given
copula density or a given family of copula densities. There should be a balance between the
complexity of the model and the number of parameters involved. To get such a balance,
model selection techniques are applied. In this way the data tell us which aspects are the
most important ones to capture into our model. The model is kept as simple as possible,
but if a more complicated model gives a better fit, it is applied. The penalty in the selection
step ensures that only a real improvement is awarded. The unknown parameters within the
chosen contamination family are estimated with moment estimators.

This paper is organized as follows. Section 2 deals with some preliminaries. In section
3 the exponential families are reviewed and the decomposition of the total error into the
model error and the stochastic error is explained. In Section 4 the contamination families
based on Legendre polynomials are reviewed, also this section deals with the model selection
problem. The natural way to select the adequate model is to add new parameters as long as
a substantial reduction of the model error. A suitable penalty function, depending on the
number of observations and the dimension of the model, is a key function. It is shown that
within a contamination family with a fixed, but unknown dimension, the selection rule is
to choose the ‘right’ dimension with fast convergence to probability 1. In section 5, for two
main variables, Income and Expenditure, in Iranian Households Income and Expenditure
Survey, the nearest approximation of copula density using selection method is obtained.

2 Preliminaries

A 2-dimensional copula is a function C : [0, 1]2 → [0, 1] with the following properties:
1) For every u, v ∈ [0, 1], C(0, v) = C(u, 0) = 0;
2) For every u, v ∈ [0, 1], C(u, 1) = u,C(1, v) = v;
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3) For every (u1, v1), (u2, v2) ∈ [0, 1]× [0, 1] with u1 ≤ u2, v1 ≤ v2;

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

The theoretical basis of multivariate modelling by copulas is provided by a theorem due to
Sklar(1959).
Sklar’s Theorem: Let F be a joint distribution function with margins F1, F2 which are
respectively the cumulative distribution functions of the random variables X1 and X2. Then
there exists a copula function C such that

F (x1, x2) = C(F1(x1), F2(x2))

for every x1, x2 ∈ R̄ where R̄ represents the extended real line. Conversely if C is a copula
and F1, F2 are distribution functions then the function F defined a joint distribution function
with margins F1, F2.
The parametric copula approach ensures a high level of flexibility for modelling, since
the specification of the margins F1 and F2 can be separated from the specification of the
dependence structure through the function C with an underlying parameter θ which governs
the intensity of the dependence.

In the case that the bivariate distribution has a density f , and this is available, we have

f(x1, x2) = c(F1(x1), F2(x2)).f1(x1).f2(x2)

where c is the copula density.
The objective of this paper is to estimate the (unknown) copula density c for Iranian

Income and Expenditure. In general a natural and very useful way to describe a smooth
function on the interval (0, 1) is to apply the orthonormal system of Legendre polynomials.
This leads for a function z on (0, 1) as

z(u) =
∑
r≥0

γrbr(u)

where br is the rth Legendre polynomial on (0, 1) and γr is the rth Fourier coefficient, given

by γr ≤ z, br ≥
∫ 1

0
z(u)br(u)du.

For example the Legendre polynomials b0, ..., b5 are given by

b0(u) = 1
b1(u) =

√
3(2u− 1)

b2(u) =
√
5(6u2 − 6u+ 1)

b3(u) =
√
7(20u3 − 30u2 + 12u− 1)

b4(u) = 3(70u4 − 140u3 + 90u2 − 20u+ 1)
b5(u) =

√
11(252u5 − 630u4 + 560u3 − 210u2 + 30u− 1) (2.1)
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3 Exponential families

The exponential families are well-known families of parametric models that are used for
approximating copula density function. If c0 is the starting copula density function, the
desired copula density is then approximated by

ck(u, v; θ) = c0(u, v) exp{
k∑

j=1

θjhj(u, v)− ψk(θ)} (3.1)

where hj(u, v) = brjbsj , brj and bsj are Legendre polynomials, and θ = (θ1, . . . , θk) and ψk is
a normalizing function, given by

ψk(θ) = log

∫ ∫
c0(u, v) exp{

k∑
j=1

θjhj(u, v)}dudv (3.2)

In order to balance between complexity and the number of parameters, dimension k is
determined. Note that c0 may contain an unknown parameter, which should be estimated

as well. In fact, in this way log(
ck
c0
) is approximated by a linear combination of the functions

hj minus a normalizing factor ψk to make its integral equal to 1. Exponential families ensure
automatically that we get densities such that θ belongs to the natural parameter space

Θ =

{
θ :

∫ ∫
c0(u, v) exp{

k∑
j=1

θjhj(u, v)}dudv <∞

}
(3.3)

By considering the Kullback Leibler information and using argminK(c, ck(θ)) as the
appropriate approximation we have,

K(c, ck(θ)) = Ec log

(
c

ck(θ)

)
= Ec log c− Ec log(ck(θ)) (3.4)

= Ec log c/c0 −

{
k∑

j=1

θjEchj − ψk(θ)

}

= K(c, c0)−

{
k∑

j=1

θjEchj − ψk(θ)

}

= K(c, c0)−K(ck(θ), c0) +
k∑

j=1

θj(Eθhj − Echj).

It is seen that minimizingK(c, ck(θ)) is equivalent to maximizing
∑k

j=1 θjEchj−ψk(θ), which
gives the asymptotic version of the maximum likelihood estimator. So, asymptotically the
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maximum likelihood estimator chooses that member ck(θ) of the exponential family which
is closest to the true density c in terms of Kullback Leibler information.
Kallenberg (2008) showed that ck(θ̃) is the projection of c into the exponential family with
”base” c0 or

K(c, c0) = K(c, ck(θ̃)) +K(ck(θ̃), c0). (3.5)

Where θ̃ ∈ intΘ is a unique point such that K(c, ck(θ̃)) = min{K(c, ck(θ)); θ ∈ Θ}
Hence the model error K(c, c0) is reduced to K(c, ck(θ̃)), with a reduction equal to
K(ck(θ̃), c0). Another extra reduction from taking a higher dimension, when going from
k to k+1 the model error is occured by an amount K(ck+1(θ̃k+1), c0)−K(ck(θ̃k), c0). For the
exponential family, the better fit means the smaller model error and the higher dimension or
the more parameters have to be estimated. Since parameters estimation in the exponential
family is difficult, the idea of contamination family is developed.

4 Contamination families

Just like the exponential family, here the starting point is a copula density c0, and c− c0 is
approximated by a linear combination of the functions br(U)bs(V ), hence

ck(u, v)− c0(u, v) =
k∑

j=1

γrjsjbrj(u)bsj(v) (4.1)

where γrs are Fourier coefficients as follows

γrs =

∫ ∫
{c(u, v)− c0(u, v)}br(u)bs(v)dudv = Ec(br(U)bs(V ))− Ec0(br(U)bs(V ))

= ρ(br(U), bs(V ); c)− ρ(br(U), bs(V ); c0)

These coefficients depend on the unknown copula density function c that if it is replaced
with empirical copula mass function cn, then γrs can be estimated as

γ̂rs =
1

n

n∑
i=1

br(Ui)bs(Vi)− Ec0br(U)bs(V ) (4.2)

So when the starting copula density function c0 belongs to a parametric family, its parameters
should be estimated, then we have

ĉk(u, v) = c0(u, v) +
k∑

j=1

γ̂rjsjbrj(u)bsj(v)
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Kallenberg (2009) showed that the term ∥ c− ĉk(θ) ∥22 can be written as

∥ c− ĉk ∥22 =∥ c− ck ∥22 + ∥ ck − ĉk ∥22

=

(∑
r,s

γ2rs −
k∑

j=1

γ2rjsj

)
+

k∑
j=1

(γrjsj − γ̂rjsj)
2. (4.3)

where ∥ f ∥22=
∫ ∫

f(u, v)dudv.
By equation (9) it can be seen that Total Error is decomposed by Model Error and Stochastic
Error, or

Total Error =Model Error + Stochastic Error

The model error ∥ c − ck(θ̃) ∥22 expresses how good the contamination family approximates
the true density c and the stochastic error ∥ ck(θ̃)− ck(θ̂) ∥22 is due to estimation.

4.1 Model Selection

In order to obtain parameter estimations in contamination family, the best dimension should
be chosen. Suppose mn be the largest dimension of r and s with n observations, then we
have

c0(u, v) +
mn∑
r=1

mn∑
s=1

γ̂rsbr(u)bs(v) (4.4)

as the copula density estimation.
For the selection rule, taking all the coefficients γ̂rs for 1 ≤ r, s ≤ mn yields a large estimation
error, so we consider only the largest Fourier coefficients and ignore the rest. Therefore, the
estimator from (9), is replaced by restricting to the kn largest among γ̂rs with 1 ≤ r, s ≤ mn,
yielding

ĉ(u, v) = c0(u, v) +
kn∑
j=1

γ̂rjsjbrj(u)bsj(v)

with

| γ̂r1s1 |≥| γ̂r2s2 |≥ . . . ≥| γ̂rKnsKn
| .

Random variables rj and sj depend on the data, and they are not chosen in advance. So
how large should we take kn? The optimal choice depends on c, but c is unknown, hence a
data-driven selection of the dimension is taken.
The model error for ĉk is

∑
r,s γ

2
rs −

∑k
j=1 γ

2
rjsj

. Hence,
∑k

j=1 γ
2
rjsj

should grow sufficiently
fast in order to take a higher dimension. For that purpose a penalty is introduced, this
penalty is linear in k and decreasing in n. Obviously, we do not know the γrs and therefore
we replace them by γ̂rs. Classical penalties are for example n−1 log n (Schwarz’s rule) or
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Table 1: Descriptive Statistics for Income and Expenditure data of Urban
households

Descriptive statistics Income(106Rials) Expenditure(106Rials)
Minimum 4.914 1.400

Q1 141.30 124.41
Median 207.43 182.18

Weighted Mean 278.78 262.87
Q3 299.27 270.61

Maximum 5787 4424

2n−1 ( Akaike’s criterion). It may be better to take a larger penalty, taking into account the
variance of γ̂rs

2. Kallenberg (2009), introduced a penalty as

∆n = n−1(log n)(logmn). (4.5)

The estimated copula density now becomes

ĉ(u, v) = c0(u, v) +
k̂∑

j=1

γ̂rjsjbrj(u)bsj(v). (4.6)

5 Copula density estimation for Iranian Households

Income and Expenditure

In this section, model selection method is used to estimate copula density for Iranian
Households Income and Expenditure (IHIE). The 2015 IHIE survey was carried out by a
sample of 18839 households in urban areas and 19340 households in rural areas. The survey
target population includes all private and collective settled households in urban and rural
areas. A three-staged cluster sampling method with strata is used in the survey. At the
first stage, the census areas are classified and selected. At the second stage, the urban and
rural blocks are selected and the selection of sample households is done at the third stage.
The number of samples is optimized to estimate average annual income and expenditure of
the sample household based on the aim of the survey. Income and Expenditure descriptive
statistics of urban and rural household are shown in Tables 1 and 2, respectively.
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Table 2: Descriptive Statistics for Income and Expenditure data of Rural
households

Descriptive statistics Income(106Rials) Expenditure(106Rials)
Minimum 3.6 1.23

Q1 84.52 79.41
Median 136.81 124.77

Weighted Mean 161.19 147.26
Q3 205.58 185.43

Maximum 5743 3876

5.1 IHIE copula density estimation with contamination families

By using empirical distributions as marginal distribution estimations for both variables as

FX
n (x) = (n+ 1)−1

n∑
i=1

1(Xi ≤ x)

the problem is to estimate the unknown copula function. In order to use a few largest
Fourier coefficients, the absolute value of the Fourier coefficients are arranged from largest
to smallest, and compare with

√
∆n =

√
n−1 log n logmn. By using the sample size of each

data set
√
∆n is calculated, then according to the chosen algorithm of Fourier coefficients,

these coefficients are obtained. With several start copula densities as Uniform, Gaussian,
Clayton and Frank, as it is shown in Tables 3 and 4, we have several estimations of copula
density for rural and urban data sets.

It should be noted that without using this method (selection method) among known
copula densities, Frank copula and Clayton copula are the appropriate copulas for Urban
and Rural data respectively, here these copulas can be chosen as starting points.

5.2 Investigating performance of the estimated copula function

To check the performance of the estimated copula densities, frequency of data is compared
with the estimated probabilities, based on mean absolute relative error (m.a.r.e), | ĉ

freq−1
|,

on the same symmetric rectangles (u = v = 0.25, 0.4) and asymmetric rectangles (u =
0.25, v = 0.5;u = 0.5, v = 0.25) and also the corresponding upper tail rectangles.

As it can be seen from Table 5 and 6 in columns cU0 /freq the values are far from number
one and therefore, it is concluded that when k̂ = 0 the estimating of dependence with uniform
starting copula density function is not good. But by usinf Uniform copula, as starting copula
density function, the selection method build better approximations, column ĉ0

U/freq in both
Tables 5 and 6 shows these improvements.
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Table 3: Results for Urban Data (
√
∆18839 = 0.029)

c0 Uniform

θ̂ −
γ̂rs γ̂11 = 0.0764, γ̂22 = 0.0592, γ̂33 = 0.0429, γ̂44 = 0.0313

k̂ 4
ĉ ĉu(u, v) = 1 + 0.0764b1(u)b1(v) + 0.0592b2(u)b2(v) + 0.0429b3(u)b3(v) + 0.0313b4(u)b4(v)
c0 Gaussian

θ̂ 0.798
γ̂rs γ̂33 = 0.0540, γ̂44 = 0.0738

k̂ 2

ĉ ĉG(u, v) = c0(u, v; 0.798) + 0.0540b3(u)b3(v) + 0.0738b4(u)b4(v)
c0 Frank

θ̂ 1.01
γ̂rs γ̂22 = 0.1203 γ̂33 = 0.1804, γ̂44 = 0.1821

k̂ 3

ĉ ĉF (u, v) = c0(u, v; 6.42) + 0.1203b2(u)b2(v) + 0.1804b3(u)b3(v) + 0.18212b4(u)b4(v)

Table 4: Results for Rural Data (
√
∆19340 = 0.0286 )

c0 Uniform

θ̂
γ̂rs γ̂11 = 0.0738, γ̂22 = 0.0539, γ̂33 = 0.0372

k̂ 3
ĉ ĉu(u, v) = 1 + 0.0738b1(u)b1(v) + 0.0539b2(u)b2(v) + 0.0372b3(u)b3(v)
c0 Gaussian

θ̂ 0.754
γ̂rs γ̂22 = 0.0412, γ̂42 = 0.0352

k̂ 2

ĉ ĉG(u, v) = c0(u, v; 0.812) + 0.0412b2(u)b2(v) + 0.0352b4(u)b2(v)
c0 Clayton

θ̂ 2.067
γ̂rs γ̂22 = 0.0699

k̂ 1

ĉ ĉC(u, v) = c0(u, v; 2.067) + 0.0699b2(u)b2(v)
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Table 5: The frequencies and approximations on different rectangles for
Urban data

rectangles freq cU0 /freq cG0 /freq cF0 /freq ĉU/freq ĉG/freq ĉF/freq
(0, 0.25)× (0, 0.25) 0.1726 0.362 0.977 0.983 0.986 0.980 1.022
(0, 0.4)× (0, 0.4) 0.2985 0.536 1.006 1.028 0.985 0.997 1.009
(0, 0.25)× (0, 0.5) 0.2290 0.546 1.011 1.003 0.991 0.991 1.001
(0, 0.5)× (0, 0.25) 0.2296 0.544 1.009 1.029 1.090 1.001 1.004
(0.75, 1)× (0.75, 1) 0.1652 0.378 1.021 1.016 1.044 1.015 1.019
(0.6, 1)× (0.6, 1) 0.2950 0.542 1.018 1.037 1.009 1.004 1.021
(0.75, 1)× (0.5, 1) 0.2286 0.546 1.014 1.044 0.992 1.002 1.012
(0.5, 1)× (0.75, 1) 0.2247 0.556 1.031 1.022 1.003 1.013 1.008

m.a.r.e. 0.489 0.017 0.024 0.024 0.008 0.012

Table 6: The frequencies and approximations on different rectangles for Rural
data

rectangles freq cU0 /freq cG0 /freq c0
C/freq ĉU/freq ĉG/freq ĉC/freq

(0, 0.25)× (0, 0.25) 0.1739 0.359 0.921 1.128 0.917 0.981 1.058
(0, 0.4)× (0, 0.4) 0.2959 0.541 0.979 1.059 0.988 0.994 1.042
(0, 0.25)× (0, 0.5) 0.2271 0.550 0.993 1.031 0.995 0.994 1.031
(0, 0.5)× (0, 0.25) 0.2303 0.543 0.979 1.059 0.987 0.977 1.052
(0.75, 1)× (0.75, 1) 0.1516 0.412 1.056 0.857 0.979 1.008 0.982
(0.6, 1)× (0.6, 1) 0.2859 0.560 1.013 0.970 1.008 1.019 0.985
(0.75, 1)× (0.5, 1) 0.2223 0.562 1.014 0.988 1.021 1.013 0.992
(0.5, 1)× (0.75, 1) 0.2199 0.568 1.025 0.950 1.014 1.024 0.968

m.a.r.e. 0.490 0.029 0.0640 0.022 0.015 0.032
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Table 7: The 0.99 and 0.95 estimated and real quantiles for Urban data

probability quantile expectation number real number
0.99 0.9654 189 182
0.95 0.9421 942 940

Table 8: The 0.99 and 0.95 estimated and real quantiles for Rural data

probability quantile expectation number real number
0.99 0.9791 194 190
0.95 0.8753 967 970

Finally, in both Tables 5 and 6, columns ĉG/freq, based on m.a.r.e., it can be seen that
Gaussian copula as starting copula, yields appropriate estimations for copula density for
Urban and Rural data.

For more investigating of this new method, the quantile 0.99 and 0.95 is obtained by
using ĉG, and the values have been compared with the true values (from the IHIE). The
results are shown in Tables 7 and 8. In both tables, the expectation numbers and the real
numbers are close to each other.
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