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Abstract. Different estimation of multicomponent stress-strength parameter

for Lomax distribution is considered, in veiw of frequentist and Bayesian in-

ference. We derive the maximum likelihood estimation (MLE) and asymptotic
confidence interval of multicomponent stress-strength parameter. Also, due to

the lack of explicit form, the Bayes estimation of this parameter is obtained us-

ing two approximation method: Lindley’s approximation and MCMC method.
We compare different estimation methods using a Monte Carlo simulation.

1. Introduction

Statistical inference of the stress-strength parameter R = P (Y < X) is a general
problem of interest in reliability theory. The random variables Y and X are related
to stress and strength, respectively. If at any time the applied stress is greater
than its strength, the system fails. A multicomponent system is a system having
more than one component. This system is composed of a common stress and k
independent and identical strengths component. When s (1 ≤ s ≤ k) or more of
the components simultaneously survive, the system functions. [1] developed the
multicomponent reliability as

Rs,k = P [at least s of (X1, . . . , Xk) exceed Y ]

=

k∑
p=s

(
k

p

)∫ ∞
−∞

[1− FX(x)]p[FX(x)]k−pdFY (y),
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when the common random stress Y with cdf FY (.) subjected to (X1, . . . , Xk) which
are independent and identically distributed random variables with cdf FX(.). Some
authors have considered this problem. See for example [3, 4].

Lomax (Lo) distribution with the parameters α and λ, has the probability density
function as f(x) = αλ(1 + λx)−(α+1), x, α, λ > 0. In this paper, we obtain the
different point and interval estimation of the Rs,k, when the stress and strengths
are independent random variables from the Lomax distributions.

2. MLE of Rs,k

Suppose that X ∼ Lo(α, λ) and Y ∼ Lo(β, λ) and they are independent ran-
dom variables with unknown parameters α and β and common parameter λ. The
multicomponent stress-strength reliability is given by

Rs,k =
k∑
p=s

k−p∑
q=0

(
k
p

)(
k − p
q

)
(−1)q

β

β + α(p+ q)
.

In this case, we need to compute the MLE of the vector of parameters θ = (α, β, λ)
to compute MLE for Rs,k. Then, the likelihood function can be written as:

L(α, β, λ) =

n∏
i=1

( k∏
j=1

f(xij)

)
g(yi)

=

n∏
i=1

( k∏
j=1

αλ(1 + λxij)
−(α+1)

)
βλ(1 + λyi)

−(β+1)

= αnkλn(k+1)βn
( n∏
i=1

k∏
j=1

(1 + λxij)
−(α+1)

)( n∏
i=1

(1 + λyi)
−(β+1)

)

= αnkβnλn(k+1)

( n∏
i=1

k∏
j=1

(1 + λxij)
−(α+1)

)( n∏
i=1

(1 + λyi)
−(β+1)

)
,

where {Xi1, . . . , Xik}, i = 1, . . . , n, is a sample from Lo(α, λ) and {Y1, . . . , Yn} is
a sample from Lo(β, λ). So the log-likelihood function can be derived by:

`(α, β, λ) = = nk logα+ n log β + n(k + 1) log λ− (α+ 1)
n∑
i=1

k∑
j=1

log(1 + λxij)

− (β + 1)

n∑
i=1

log(1 + λyi).

The MLE of α, β, which presented by α̂, β̂ respectively, can be obtained as a solu-
tion of the following equation:

∂`

∂α
=
nk

α
−

n∑
i=1

k∑
j=1

log(1 + λxij) = 0, (2.1)

∂`

∂β
=
n

β
−

n∑
i=1

log(1 + λyi) = 0, (2.2)
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From (2.1) and (2.2), we derive:

α̂(λ) =
nk

n∑
i=1

k∑
j=1

log(1 + λxij)

.

β̂(λ) =
n

n∑
i=1

log(1 + λyi)
.

The MLE of λ, say λ̂, is the solution of the following nonlinear equation

n(k + 1)

λ
− (α+ 1)

n∑
i=1

k∑
j=1

xij
1 + λxij

− (β + 1)

n∑
i=1

yi
1 + λyi

= 0. (2.3)

This equation (2.3) is solved numerically using iterative process as Newton Raphon

to get λ̂. Then we can get the MLE of Rs,k as follows

R̂MLE =

k∑
p=s

k−p∑
q=0

(
k
p

)(
k − p
q

)
(−1)q

β̂

β̂ + α̂(p+ q)
. (2.4)

3. Asymptotic confidence interval

In this section, by obtaining the asymptotic distribution of Rs,k, the asymptotic

confidence interval for R̂MLE
s,k , is derived. Because Rs,k is a function of the unknown

parameters, so by using the asymptotic distribution, the asymptotic variances of
the MLE are obtained by the inverse of the observe Fisher information matrix

I = [Iij ] = [ −∂`∂θi∂θj
], where i, j = 1, 2, 3 and θ = (α̂, β̂, λ̂). The elements of the

observed Fisher information matrix are second partial derivative of log-likelihood
function, which can be evaluated as follow:

I11 =
nk

α2
, I12 = 0, I22 =

n

β2
, I13 =

n∑
i=1

k∑
j=1

xij
1 + λxij

, I23 =

n∑
i=1

yi
1 + λyi

,

I33 =
n(k + 1)

λ2
+ (α+ 1)

n∑
i=1

k∑
j=1

(
xij

1 + λxij

)2

+ (β + 1)

n∑
i=1

(
yi

1 + λyi

)2

.

Theorem 3.1. Suppose that n, k →∞ and n/k = p then

[α̂− α β̂ − β λ̂− λ]T
D−→ N3(0, I−1(α, β, λ)),

where I(α, β, λ) and I−1(α, β, λ) are symmetric matrices as

I(α, λ, µ) =

 I11 0 I13
I22 I23

I33

 , I−1(α, β, λ) =
1

|I(α, β, λ)|

 b11 b12 b13
b22 b23

b33

 ,

in which |I(α, β, λ)| = I11I22I33 − I11I223 − I213I22,

b11 = I22I33 − I223, b12 = I13I23, b13 = −I13I22,
b22 = I11I33 − I213, b23 = −I11I23, b33 = I11I22.

Proof. The theorem is proved from the asymptotic normality of the MLE estimates.
�
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Theorem 3.2. Suppose that R̂MLE
s,k is the MLE of Rs,k. So,

(R̂MLE
s,k −Rs,k)

D−→ N(0, B),

where

B =
1

|I(α, λ, µ)|

[
(
∂Rs,k
∂α

)2b11 + (
∂Rs,k
∂β

)2b22 + 2(
∂Rs,k
∂α

)(
∂Rs,k
∂β

)b12

]
, (3.1)

∂Rs,k
∂α

=

n∑
p=s

k∑
q=1

(
k

p

)(
k − p
q

)
(−1)q+1β(p+ q)

(α(p+ q) + β)2
, (3.2)

∂Rs,k
∂β

=

n∑
p=s

k∑
q=1

(
k

p

)(
k − p
q

)
(−1)qα(p+ q)

(α(p+ q) + β)2
. (3.3)

Proof. Using Theorem 3.1 and applying delta method, we attain the asymptotic

distribution of R̂ as

(R̂MLE
s,k −Rs,k)

D−→ N(0, B),

where B = bTI−1(α, β, λ)b and b = [
∂Rs,k
∂α

∂Rs,k
∂β

∂Rs,k
∂λ ]T = [∂R∂α

∂R
∂λ 0]T , as the rest

is defined in 3.1, the Theorem is proved. �

By Theorem 3.2, we construct a 100(1 − γ)% asymptotic confidence interval of
R as:

(R̂MLE − z1− γ2
√
B̂, R̂MLE + z1− γ2

√
B̂), (3.4)

where zγ is 100γ-th percentile of N(0, 1).

4. Bayes estimation

In this section, we provide the Bayes inference of Rs,k where α, β and λ are
gamma random variables. So we consider the following priors for α, β and λ,

π1(α) ∝ αa1−1e−b1α, α > 0, a1, b1 > 0,

π2(β) ∝ βa2−1e−b2β , β > 0, a2, b2 > 0,

π3(λ) ∝ λa3−1e−b3λ, λ > 0, a3, b3 > 0.

The joint posterior PDF based on the observed sample, is defined as :

π(α, β, λ|data) =
L(data|α, β, λ)π1(α)π2()

¯
π2(β)π3(λ)∫∞

0

∫∞
0

∫∞
0
L(data|αβ, λ)π1(α)π2(β)π3(λ)dα dβ dλ

. (4.1)

It is impossible to obtain (4.1), analytically. Therefore instead, we propose to
approximate it by using two following methods:

• Lindley’s approximation,
• MCMC method.
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4.1. Lindley’s approximation. One of the most numerical methods to evaluate
the Bayes estimate is Lindley’s method, see [5]. This approximat procedure can
compute the ratio of two integrals. If U(θ) is a function of unknown parameters,
then under the squared error loss function, the Bayes estimate of U(θ) can be
derived from the following integral representation:

E
(
u(θ)|data

)
=

∫
u(θ)eQ(θ)dθ∫
eQ(θ)dθ

,

where Q(θ) = `(θ) + ρ(θ), `(θ) is log-likelihood function and ρ(θ) is the logarithm
of prior density of θ. The Lindley’s approximation of E(u(θ)|data) is given by

E
(
u(θ)|data

)
= u+

1

2

∑
i

∑
j

(uij + 2uiρj)σij +
1

2

∑
i

∑
j

∑
k

∑
p

`ijkσijσkpup

∣∣∣∣
θ=θ̂

,

where θ = (θ1, . . . , θm), i, j, k, p = 1, . . . ,m, θ̂ is the MLE of θ, u = u(θ), ui =
∂u/∂θi, uij = ∂2u/∂θi∂θj , `ijk = ∂3`/∂θi∂θj∂θk, ρj = ∂ρ/∂θj , and σij = (i, j)-th
element in the inverse of matrix [−`ij ] all evaluated at the MLE of parameters.
For the three parameters case θ = (θ1, θ2, θ3), Lindley’s approximate result in

E
(
u(θ)|data

)
= u+ (u1d1 + u2d2 + u3d3 + d4 + d5) +

1

2
[A(u1σ11 + u2σ12 + u3σ13)

+B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)],

evaluated at θ̂ = (θ̂1, θ̂2, θ̂3), where

di = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3, d4 = u12σ12 + u13σ13 + u23σ23,

d5 =
1

2
(u11σ11 + u22σ22 + u33σ33),

A = `111σ11 + 2`121σ12 + 2`131σ13 + 2`231σ23 + `221σ22 + `331σ33,

B = `112σ11 + 2`122σ12 + 2`132σ13 + 2`232σ23 + `222σ22 + `332σ33,

C = `113σ11 + 2`123σ12 + 2`133σ13 + 2`233σ23 + `223σ22 + `333σ33.

Now, when (θ1, θ2, θ3) ≡ (α, β, λ) and u ≡ u(α, β, λ) = Rs,k, we have

ρ1 =
a1 − 1

α
− b1, ρ2 =

a2 − 1

β
− b2, ρ3 =

a3 − 1

λ
− b3 `11 = −nk

α2
,

`22 = − n

β2
, `12 = 0, `13 =

∂2`

∂α∂λ
=

n∑
i=1

k∑
j=1

xij
1 + λxij

, `23 =
∂2`

∂λ∂µ
=

n∑
i=1

yi
1 + λyi

,

`33 =
∂2`

∂λ2
=
n(k + 1)

λ2
− (α+ 1)

n∑
i=1

k∑
j=1

(
xij

1 + λxij

)2

− (β + 1)

n∑
i=1

(
yi

1 + λyi

)2

.

σij , i, j = 1, 2, 3 are obtained by using `ij , i, j = 1, 2, 3 and

`111 =
2nk

α3
, `222 =

2n

β3
, `133 =

n∑
i=1

k∑
j=1

(
xij

1 + λxij

)2

, `233 =

n∑
i=1

(
yi

1 + λyi

)2

,

`333 =
2n(k + 1)

λ3
− (α+ 1)

n∑
i=1

k∑
j=1

(
xij

1 + λxij

)3

− (β + 1)

n∑
i=1

(
yi

1 + λyi

)3

,
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and the other `ijk = 0. Furthermore, u3 = ui3 = 0, i = 1, 2, 3, and u1, u2 are
explained in (3.2) and (3.3), respectively. Also,

u11 =

n∑
p=s

k∑
q=1

(
k

p

)(
k − p
q

)
(−1)q+1β(p+ q)2

(α(p+ q) + β)3
,

u12 = u21 =

n∑
p=s

k∑
q=1

(
k

p

)(
k − p
q

)
(−1)q(p+ q)(β − α(p+ q))

(α(p+ q) + β)3
,

u22 =

n∑
p=s

k∑
q=1

(
k

p

)(
k − p
q

)
(−1)q+12α(p+ q)

(α(p+ q) + β)3
.

Therefore,

d4 = u12σ12, d5 =
1

2
(u11σ11 + u22σ22),

A = `111σ11 + `331σ33, B = `222σ22 + `332σ33, C = 2`133σ13 + 2`233σ23 + `333σ33.

So, the Bayes estimate of Rs,k resulted by

R̂Lins,k = R+ [u1d1 + u2d2 + d4 + d5] +
1

2
[A(u1σ11 + u2σ12)

+B(u1σ21 + u2σ22) + C(u1σ31 + u2σ32)]. (4.2)

Notice that all parameters should be estimated at (α̂, β̂, λ̂).
Because the Bayesian credible interval, applying the Lindley’s approximation,

is not available, we force to use MCMC method. Utilizing this method, Bayes
estimate is approximated and associated HPD credible interval is constructed.

4.2. MCMC method. From (4.1), the posterior pdf of α, β and λ are as follows:

α|λ, data ∼ Γ
(
n+ a1, b1 +

n∑
i=1

k∑
j=1

log(1 + λxij)
)
,

β|λ, data ∼ Γ
(
nk + a2, b2 +

n∑
i=1

log(1 + λyi)
)
,

π(λ|α, β, data) ∝ λn(k+1)+a3−1e−b3λ
( n∏
i=1

k∏
j=1

(1 + λxij)
−α
)( n∏

i=1

(1 + λyi)
−β
)
.

Because we cannot reduce the posterior pdf of λ analytically to a well known dis-
tribution, so we force to use the Metropolis-Hastings method to generate random
samples form it. Therefore, we propose the Gibbs sampling algorithm as follows:

(1) Start with the initial value (α(0), β(0), λ(0)).
(2) Set t = 1.
(3) Generate λ(t) from π(λ|α(t−1), β(t−1),data), using Metropolis-Hastings method.

(4) Generate α(t) from Γ
(
n+ a1, b1

n∑
i=1

k∑
j=1

log(1 + λ(t−1)xij)
)
.

(5) Generate β(t) from Γ
(
nk + a2, b2 +

n∑
i=1

log(1 + λ(t−1)yi)
)
.

(6) Compute R(t)s,k =
k∑
p=s

k−p∑
q=0

(
k
p

)(
k−p
q

) (−1)qβ(t)

α(t)(p+q)+β(t)
.
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(7) Set t = t+ 1.
(8) Repeat steps 3-7, T times.

This above algorithm is used to evaluate the Bayes estimate of Rs,k under the
squared error loss function. Therefore, the MCMC Bayes estimate can be resulted
by

R̂MC
s,k =

1

T

T∑
t=1

Rt. (4.3)

In addition, applying the method of Chen and Shao 1999, we construct a 100(1−γ)%
HPD credible interval of R using the idea of [2].

5. Simulation Study

We consider the performance of different estimates by using the Monte Carlo
simulations. The different estimates, in terms of mean squared errors (MSEs)
are compared together and the different confidence intervals, in terms of average
confidence lengths are compared together. Based on 1000 replications, all results
are gathered. The parameter values (θ, λ, α) = (1, 1, 1) are used to obtain the
simulation results. We derive MLE of Rs,k by (2.4) and asymptotic confidence
interval for it using (3.4). Also, the Bayesian inference is considered by assuming
two priors as Prior 1: aj = 0, bj = 0, j = 1, 2, Prior 2: aj = 1, bj = 1, j = 1, 2.
Under the above hypotheses, the MSEs of Bayesian estimates of Rs,k, via Linldey’s
approximation and MCMC method are derived by (4.2) and (4.3), respectively.
Also, we derived the 95% HPD intervals for Rs,k. The simulation results are given
in Table 1.

From Table 1, we observed that the best performance, in terms of MSE, belong
to informative priors. Furthermore, the performance of Bayes estimates which
obtained by MCMC method are generally better than those obtained by Lindleys
approximation. Also, we observed that the best performance among the different
intervals belong to HPD intervals based on informative priors.

Table 1. Simulation results

Prior 1 Prior 2
n Rs,k MLE Lindley MCMC Lindley MCMC

MSE Length MSE MSE HPD MSE MSE HPD
10 (3,5) 0.0254 0.3912 0.0229 0.0039 0.3512 0.0237 0.0026 0.3365

(2,4) 0.0317 0.4125 0.0276 0.0094 0.4098 0.0303 0.0064 0.3876
20 (3,5) 0.0178 0.3542 0.0166 0.0019 0.3355 0.0177 0.0015 0.3021

(2,4) 0.0248 0.4098 0.0245 0.0044 0.3987 0.0224 0.0036 0.3711
30 (3,5) 0.0157 0.3365 0.0156 0.0013 0.3287 0.0148 0.0011 0.2912

(2,4) 0.0234 0.3777 0.0231 0.0030 0.3542 0.0216 0.0027 0.3444
40 (3,5) 0.0153 0.3023 0.0152 0.0009 0.2889 0.0146 0.0008 0.2768

(2,4) 0.0225 0.3542 0.0221 0.0025 0.3324 0.0211 0.0022 0.3122
50 (3,5) 0.0153 0.2877 0.0152 0.0008 0.2531 0.0147 0.0007 0.2436

(2,4) 0.0222 0.3333 0.0219 0.0019 0.3165 0.0211 0.0018 0.3054
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