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Abstract. In this paper, we introduce a new lifetime distribution by mixing
the Weibull and Lindely distributions. We assume that the scale parameter of
the Weibull distribution is a random variable having the Lindely distribution.
The shapes of the density and hazard rate functions are discussed. Further,

some properties of the distribution are obtained, involving quantiles and mo-
ments. The distribution parameters are estimated by maximum likelihood
method and its performance is evaluated by a simulation study. Applicabil-

ity of the distribution among other competitive distributions is illustrated by
fitting a practical data set and using some goodness-of-fit statistics.

1. Introduction

In several practical situations, objects in a certain population differ substantially
from each other, hence the heterogeneity of such objects should be considered for
accurate data analysis of this population. Therefore, mixture distribution is a
recommended model for analyzing the heterogeneity. Another issue must be taken
into account is the different nature of the practical data which requires introducing
new distributions with various hazard rate (hr) shapes to model and analyze such
data.

The two aims above are investigated by introducing a new mixture distribution,
named Weibull Lindley distribution via mixing the Lindely and Weibull distribu-
tions in a different manner than used in Asgharzadeh et al. [2]. Also, the new
distribution has decreasing and unimodal hazard rates shapes and its construction
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as follows.
Let X | λ follow the Weibull distribution with the probability density function
(pdf)

f(x | λ) = λαxα−1e−λxα

, x > 0; α, λ > 0,

and λ | β follows the Lindley distribution (Lindley [7]) with the pdf

f(λ | β) = β2

1 + β
(1 + λ)e−βλ, λ > 0; β > 0.

Hence, the marginal distribution of X is called the Weibull-Lindley (WeL) distri-
bution. The pdf of X is obtained as

f(x) =
αβ2 xα−1

1 + β

∫ ∞

0

λ(1 + λ)e−(β+xα)λ dλ,

and after some algebra, we gets the WeL pdf as

f(x) =
αβ2xα−1

1 + β

2 + β + xα

(β + xα)
3 , x > 0; α, β > 0. (1.1)

Moreover, the cumulative distribution function (cdf) of the WeL distribution is

F (x) = 1− β2

1 + β

1 + β + xα

(β + xα)
2 , (1.2)

hence, the corresponding reliability (survival) function is given by

R(x) =
β2

1 + β

1 + β + xα

(β + xα)
2 . (1.3)

In reliability analysis, usefulness of the model (1.1) comes in noting that X can
be the lifetime of a component and λ is the scale parameter of its distribution. If
the population having some variability in its scale parameter, then this variability
can be explained by the distribution for λ. Moreover, comparing the WeL distribu-
tion with Weibull and Lindley distributions implies the flexibility of WeL in terms
of its hazard rate shapes as shall be shown later. Also, we shall see later that
it has decreasing and unimodal (upside-down bathtub) hazard rates. Decreasing
and unimodal shaped hazard rates have many applications in reliability and sur-
vival analysis. It may be difficult to know why the lifetime of an object having a
decreasing hazard rate. However, it would seem to correspond to some physical
mechanisms of improvement with the time. In reliability, this may happen in sit-
uations where the product manufacturer continues to improve in-serve product by
implementing corrective actions. On the other side, as mentioned by Lai and Xie
[6], when the main reasons of the failures of products are caused by fatigue and cor-
rosion, the failure rates of those products will exhibit unimodal shapes. Further, in
some medical situations, such as breast cancer and infection with some new viruses,
the hazard rate has a unimodal shape, see Demicheli et al. [4]. Another example
in epidemiology is that the patients with tuberculosis have a risk which initially
increases and then decreases after the treatment. The Weibull Lindley distribution
proposed by Asgharzadeh et al [2] does not allow a unimodal hazard rate shape.
So, this distribution is not suitable for modeling data with unimodal hazard rates.
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2. Shape characteristics

In this section, we discuss the shape characteristics of the pdf, hrf and rhrf of the
WeL distribution.
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Figure 1. Plots of the WeL density for some parameter values.

2.1. Shape of pdf. we can see from (1.1) that

lim
x→0

f(x) =


∞ α < 1
2+β

β(1+β) α = 1

0 α > 1,

and limx→∞ f(x) = 0. Figure 1 shows the pdf of the WeL distribution for some
selected choices of α and β. From it, we see that the pdf of WeL distribution is
decreasing for α ≤ 1 and unimodal for α > 1. Features of the pdf of WeL distribution
are discussed theoretically in the next theorem.

Theorem 2.1. The pdf of WeL distribution given by (1.1) is decreasing for α ≤ 1
and unimodal for α > 1.

Proof. The logarithm of (1.1) is

ln f(x) = Constant+ (α− 1) lnx+ ln(2 + β + xα)− 3 ln(β + xα).

We have

d

dx
log f(x) =

α− 1

x
+

αxα−1

2 + β + xα
− 3αxα−1

β + xα

=
α− 1

x
− 2αxα−1(3 + β + xα)

(β + xα)(2 + β + xα)
.

If α ≤ 1,we easily see that
d

dx
log f(x) < 0.

Hence, f(x) is decreasing for all x. For α > 1, d
dx log f(x) has a global maximum

at some point x0, where x0 is the root of the equation d
dx log f(x) = 0.
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2.2. Hazard rate shape.

The hazard rate function (hrf) corresponding to (1.1) and (1.2) is given by

h(x) =
αxα−1 (2 + β + xα)

(β + xα) (1 + β + xα)
. (2.1)

The behavior of h(x) when x → 0 and x → ∞, respectively, are given by

lim
x→0

h(x) =


∞ α < 1
(2+β)
β(1+β) α = 1

0 α > 1

and lim
x→∞

h(x) = 0.

Figure 2, show the hrf h(x) of the WeL distribution for some choices of α and β.
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Figure 2. Plots of the WeL hrf for some parameter values.

The next theorem investigates the shapes for the hazard rate function of the
WeL distribution.

Theorem 2.2. The hazard rate function of the WeL distribution in (2.1) is de-
creasing for α ≤ 1 and unimodal for α > 1.

Proof. For the pdf (1.1), we have

η(x) = −f ′(x)

f(x)
= −α− 1

x
+

2αxα−1(3 + β + xα)

(β + xα)(2 + β + xα)
,

hence, we have

η′(x) =
α− 1

x2
+
x2α−2

[
2β(2α− 5) + β2(α− 3)− 6

]
+ x3α−2

[
β(α− 3)− α− 7

]
− x4α−2

(β + xα)2(2 + β + xα)2
.

For α ≤ 1, we have η′(x) < 0. For α > 1, η(x) has a global maximum at some point
x0, where x0 is the root of the equation η′(x) = 0. Therefore, this part follows from
Glasers Theorem (Glaser [8]).
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3. Some properties of the WeL distribution

In this section, we obtain some properties of the WeL distribution, involving
quantiles and moments.

3.1. Quantiles and moments. For the WeL distribution, the pth quantile xp is
the solution of F (xp) = p, hence

xp =

(
(1 + β)

(
(1 +

xα
p

β
)2(1− p)− 1

))1/α

,

which is the base of generating WeL random variates.
Now, we obtain moments of the WeL distribution. IfX ∼ WeL(α, β), then it can

be shown that E(X) = ∞, and generally E(Xr) = ∞, r ≥ 1, hence, all moments
of the distribution are infinite. Therefore, the WeL distribution has no mean. Thus,
in practice, if X1, X2, · · · , Xn is a random sample drawn from the WeL distribution,
then the mean X̄ does not tend to a particular value. Due to this obstacle, we get
another type of moments for this distribution. The negative moments are of interest
in various applications in life testing and estimation purposes. Therefore, we get
them for this distribution. The rth negative moment of the WeL distribution is

E(X−r) = E(E(x−r | λ)) = Γ(1− r

α
)E(λr/α)

= Γ(1− r

α
)
(r/α)!(β + r

α + 1)

βr/α(β + 1)
, r < α, r = 1, 2, · · · .

3.2. Stochastic ordering. Comparative behavior of positive continuous random
variables can be judged by stochastic ordering. Therefore, let us recall the next
concepts.

A random variable X1 is said to be smaller than a random variable X2 in the

(i) stochastic order (X1 ≺st X2) if FX1(x) ≥ FX2(x) for all x,

(ii) hazard rate order (X1 ≺hr X2) if hX1(x) ≥ hX2(x) for all x,

(iii) likelihood ratio order (X1 ≺lr X2) if
fX1 (x)

fX2 (x)
decreases in x.

The likelihood ratio order implies hazard rate order which in turn implies sto-
chastic order. The following theorem presents the stochastic ordering for the WeL
distribution. The proof is easy and omitted.

Theorem 3.1. Let Xi ∼ WeL(αi, βi), i = 1, 2, be two random variables. If α1 =
α2 = α and β1 ≤ β2, and if β1 = β2 = β ≥ 1 and α1 ≤ α2, then X1 ≺lr X2 ⇒
X1 ≺hr X2 ⇒ X1 ≺st X2.
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4. Maximum Likelihood Estimation

Let x1, x2, · · · , xn be the observed values of a random sample taken from the
WeL(α, β) distribution, then the log-likelihood function is

ln L(α, β) = n lnα+ 2n lnβ − n ln(1 + β) +
n∑

i=1

ln(2 + β + xα
i )

+ (α− 1)

n∑
i=1

ln xi − 3

n∑
i=1

ln(β + xα
i ).

(4.1)

The maximum likelihood estimators (MLEs) of α and β, say α̂ and β̂, are the
solutions of the equations

n

α
+

n∑
i=1

xα
i ln xi

2 + β + xα
i

+
n∑

i=1

ln xi − 3
n∑

i=1

xα
i ln xi

β + xα
i

= 0,

and
2n

β
− n

1 + β
+

n∑
i=1

1

2 + β + xα
i

− 3
n∑

i=1

1

β + xα
i

= 0.

5. Monte Carlo simulation study

In this section, we assess the performance of the MLE’s of the parameters with
respect to sample size n for the WeL(α, β) distribution. The assessment of per-
formance is based on a simulation study by using the Monte Carlo method. Let

α̂ and β̂ be the MLEs of the parameters α and β, respectively. We compute the
mean square error (MSE) and bias of the MLEs of the parameters α and β based
on the simulation results of N = 2000 independence replications. The results are
summarized in Table 1 for different values of n, α and β. From Table 1, the results
verify that MSE and bias of the MLEs of the parameters decrease with respect to
sample size n increases. Hence, we can see the MLEs of α and β are consistent
estimators.

Table 1. MSEs and Average biases(values in parentheses) of the
simulated estimates.

α = 0.5 β = 0.5 α = 1.0 β = 1.5
n 30 0.038 (0.162) 1.038 (0.939) 0.025 (0.004) 0.714 (-0.830)

50 0.028 (0.146) 0.880 (0.896) 0.013 (-0.013) 0.709 (-0.833)
100 0.023 (0.141) 0.822 (0.885) 0.006 (-0.030) 0.704 (-0.835)
200 0.020 (0.137) 0.800 (0.884) 0.004 (-0.032) 0.700 (-0.835)

α = 0.5 β = 1.0 α = 1.5 β = 0.5
n 30 0.029 (0.138) 0.055 (-0.091) 0.072 (-0.148) 6.352 (2.290)

50 0.022 (0.128) 0.036 (-0.097) 0.058 (-0.177) 5.195 (2.166)
100 0.018 (0.123) 0.023 (-0.097) 0.050 (-0.193) 4.612 (2.098)
200 0.015 (0.117) 0.016 (-0.103) 0.048 (-0.204) 4.348 (2.060)

α = 1.0 β = 0.5 α = 1.5 β = 1.0
n 30 0.042 (0.097) 2.982 (1.591) 0.101 (-0.247) 0.081 (0.075)

50 0.023 (0.078) 2.716 (1.568) 0.098 (-0.277) 0.046 (0.075)
100 0.013 (0.064) 2.414 (1.521) 0.093 (-0.288) 0.023 (0.064)
200 0.007 (0.055) 2.243 (1.481) 0.093 (-0.297) 0.013 (0.062)
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6. Practical data application

In this section, we present the application of the WeL model to an practical data
set to illustrate its flexibility among a set of competitive models.

The data set is the Cancer Patients data. The data represents an uncensored
data set corresponding to remission times (in months) of a random sample of 128
bladder cancer patients reported in Lee and Wang [5]. This data set consists of the
observations:

Table 2. The data set

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98
6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28
9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49 7.66 11.25 17.14
79.05 1.35 2.87 5.62 7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93
11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25
8.37 12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76
12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

We compare the WeL model with a set of competitive models, namely Lind-
ley distribution (Lindley [7]), Weibull Lindley distribution (WL) (Asgharzadeh et
al., [2]), A new weighted Lindley distribution (NWL) (Asgharzadeh et al., [1]),
The power Lindley distribution (PL) (Ghitany et al., [9]), The extended Lindley
distribution (EL) (Bakouch et al., [3]), Weibull and Gamma distribution.

Table 3. Parameter estimates, standard errors, log-likelihood val-
ues and goodness of fit measures in data set.

Model Parameter Estimation(s.e) − log(L) K-S p-value AIC BIC

WeL(α, β) α̂ = 1.7244 (0.1281) 411.4565 0.039 0.9874 826.9131 832.6172

β̂ = 23.4951 (6.3406)

Lindley(β) β̂ = 0.1960 (0.0123) 419.5299 0.116 0.0623 841.0598 843.9118

WL(α, λ, β) α̂ = 1.0479× 10 (0.0675) 414.0869 0.070 0.5555 834.1738 842.7298

λ̂ = 9.2678× 10−6 (0.0161)

β̂ = 1.0457× 10−1 (0.0093)

NWL(α, λ) α̂ = 240.1998 (588.0903) 419.4645 0.116 0.0615 842.9289 848.633

λ̂ = 0.1961 (0.0123)

PL(α, β) α̂ = 0.8303 (0.0471) 413.3538 0.068 0.5889 830.7077 836.4117

β̂ = 0.2942 (0.0369)

EL(α, λ, β) α̂ = −2.0349 (3.7241) 413.5721 0.088 0.2736 833.1442 841.7003

λ̂ = 0.0444 (0.0521)

β̂ = 1.2240 (0.2494)

Weibull(α, β) α̂ = 1.0477 (0.0675) 414.0869 0.069 0.5576 832.1738 837.8778

β̂ = 9.5600 (0.8528)

Gamma(α, θ) α̂ = 1.1725 (0.1308) 413.3678 0.073 0.4985 830.7356 836.4396

θ̂ = 0.1252 (0.0173)

For each model, the MLEs and − logL = − logL(α̂, β̂) values are computed.
Consequently, the goodness-of-fit measures: Kolmogorov-Smirnov (K-S) statistics
with their p-values, Akaike information criterion (AIC) and Bayesian information
criterion (BIC) are evaluated. The required computations are carried out using
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the R software. The best model corresponds to lower − logL, K-S, AIC and BIC
values, and large p-values associated with K-S. Table 3 , for data set and each fitted
model, list the MLEs of the parameters and their standard errors (in parentheses)
for each model and the values of the goodness-of-fit measures.

The values of mentioned measures indicate that the WeL distribution is a strong
competitor to other competitive distributions, moreover it is the best fit among oth-
ers. To assess if the WeL distribution is appropriate, Figure 5 display the histogram
of data set and the fitted density functions, and plots of the empirical and estimated
cumulative distribution functions of these fitted distributions. From those graphi-
cal measures, we can conclude that the WeL distribution is a very suitable model
to fit data set.
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for the Cancer Patients data set.

References

1. Asgharzadeh, A. Bakouch, H.S. Nadarajah, S. Sharafi, F. (2016), A new weighted Lindley
distribution with application, Brazilian Journal of Probability and Statistics, 30 (1): 1-27.

2. Asgharzadeh, A. Nadarajah, S. Sharafi, F. (2018), Weibull Lindley Distribution, REVSTAT,
16(1): 87-113.

3. Bakouch, H. S, Al-Zahrani, B. M. Al-Shomrani, A. A. Marchi, V. A. A. and Louzada, F.
(2012), An extended Lindley distribution, Journal of the Korean Statistical Society, 41: 7585.
MR2933216

4. Demicheli, R. Bonadonna, G. Hrushesky, W. J. Retsky, M. W. Valagussa, P. (2004),

Menopausal status dependence of the timing of breast cancer recurrence after surgical removal
of the primary tumour, Breast Cancer Res 6(6): 689-696.

5. Lee, E. T. and Wang, J. W. (2003), Statistical Methods for Survival Data Analysis, Wiley,
New York, DOI: 10.1002/0471458546.

6. Lai, C. D. and Xie, M. (2006), Stochastic ageing and dependence for reliability. New York:
Springer.

7. Lindley, D. V. (1958), Fiducial distributions and Bayes theorem, Journal of the Royal Statistical

Society Series, B 20: 102-107.
8. Glaser, R. E. (1980), Bathtub and related failure rate characterizations, Journal of the Amer-

ican Statistical Association, 75: 667-672.
9. Ghitany, M. E. Al-Mutairi, D. K. Balakrishnan, N. and Al-Enezi, L. J. (2013), Power Lindley

distribution and associated inference, Computational Statistics and Data Analysis, 64: 20-33.


	1. Introduction
	2. Shape characteristics
	2.1. Shape of pdf
	2.2. Hazard rate shape

	3. Some properties of the WeL distribution
	3.1. Quantiles and moments
	3.2. Stochastic ordering

	4. Maximum Likelihood Estimation
	5. Monte Carlo simulation study
	6. Practical data application
	References

